cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A324936 Number of unlabeled rooted trees with n vertices whose non-leaf terminal subtrees are all different.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 37, 83, 189, 436, 1014, 2373, 5578, 13156, 31104, 73665, 174665, 414427, 983606, 2334488
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

The Matula-Goebel numbers of these trees are given by A324935.

Examples

			The a(1) = 1 through a(6) = 17 trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o(o)))   (((ooo)))
                          (o((o)))   ((o)(oo))
                          ((((o))))  ((o(oo)))
                                     ((oo(o)))
                                     (o((oo)))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o(o))))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    durt[n_]:=Join@@Table[Select[Union[Sort/@Tuples[durt/@ptn]],UnsameQ@@Cases[#,{},{0,Infinity}]&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[durt[n]],{n,10}]

A325612 Width (number of leaves) of the rooted tree with Matula-Goebel number 2^n - 1.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 1, 4, 5, 3, 6, 7, 4, 5, 7, 6, 7, 11, 7, 7, 9, 10, 7, 13, 7, 11, 9, 11, 11, 13, 11, 12, 15, 16, 10, 19, 19, 15, 18, 16, 16, 18, 10, 18, 18, 17, 15, 21, 15, 18, 24, 23, 19, 23, 25, 25, 18, 26, 25, 28, 21, 21, 25, 23, 21, 29, 28, 31, 21, 24, 23
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
For n > 1, a(n) is the multiplicity of q(1) = 2 in the q-factorization of 2^n - 1.

Examples

			The rooted tree with Matula-Goebel number 2047 = 2^11 - 1 is (((o)(o))(ooo(o))), which has 6 leaves (o's), so a(11) = 6.
		

Crossrefs

Matula-Goebel numbers: A007097, A061775, A109082, A109129, A196050, A317713.
Mersenne numbers: A046051, A046800, A059305, A325610, A325611, A325625.

Programs

  • Mathematica
    mglv[n_]:=If[n==1,1,Total[Cases[FactorInteger[n],{p_,k_}:>mglv[PrimePi[p]]*k]]];
    Table[mglv[2^n-1],{n,30}]

Extensions

More terms from Jinyuan Wang, Feb 25 2025

A325611 Number of nodes in the rooted tree with Matula-Goebel number 2^n - 1.

Original entry on oeis.org

1, 3, 4, 6, 6, 8, 7, 10, 10, 12, 12, 15, 12, 14, 16, 18, 14, 20, 16, 23, 20, 22, 22, 25, 25, 24, 23, 29, 26, 30, 27, 31, 33, 28, 32, 38, 36, 31, 36, 40, 37, 38, 33, 43, 44, 42, 39, 48, 39, 49, 45, 48, 43, 49, 49, 53, 47, 54, 47, 61
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Then a(n) is one plus the number of factors (counted with multiplicity) in the q-factorization of 2^n - 1.

Examples

			The rooted tree with Matula-Goebel number 2047 = 2^11 - 1 is (((o)(o))(ooo(o))), which has 12 nodes (o's plus brackets), so a(11) = 12.
		

Crossrefs

Matula-Goebel numbers: A007097, A061775, A109082, A109129, A196050, A317713.
Mersenne numbers: A046051, A046800, A059305, A325610, A325612, A325625.

Programs

  • Mathematica
    mgwt[n_]:=If[n==1,1,1+Total[Cases[FactorInteger[n],{p_,k_}:>mgwt[PrimePi[p]]*k]]];
    Table[mgwt[2^n-1],{n,30}]

A325614 Unsorted q-signature of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 2, 1, 4, 2, 1, 1, 3, 2, 3, 1, 3, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 2, 1, 4, 1, 2, 2, 2, 3, 1, 1, 3, 3, 4, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 5, 2, 2, 1, 1, 3, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Row n lists the nonzero multiplicities in the q-factorization of n, in order of q-index. For example, row 11 is (1,1,1,1) and row 360 is (6,3,1).

Examples

			Triangle begins:
  {}
  1
  1 1
  2
  1 1 1
  2 1
  2 1
  3
  2 2
  2 1 1
  1 1 1 1
  3 1
  2 1 1
  3 1
  2 2 1
  4
  2 1 1
  3 2
  3 1
  3 1 1
		

Crossrefs

Row lengths are A324923.
Row sums are A196050.
Row-maxima are A109129.

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Length/@Split[difac[n]],{n,30}]

A325660 Number of ones in the q-signature of n.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 1, 0, 0, 2, 4, 1, 2, 1, 1, 0, 2, 0, 1, 2, 2, 3, 1, 1, 0, 2, 0, 1, 3, 1, 5, 0, 2, 2, 3, 0, 2, 1, 1, 2, 3, 2, 2, 3, 1, 1, 2, 1, 0, 0, 3, 2, 1, 0, 1, 1, 2, 3, 3, 1, 1, 4, 1, 0, 2, 2, 2, 2, 1, 3, 3, 0, 3, 2, 0, 1, 4, 1, 4, 2, 0, 3, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Then a(n) is the number of factors of multiplicity one in the q-factorization of n.
Also the number of rooted trees appearing only once in the multiset of terminal subtrees of the rooted tree with Matula-Goebel number n.

Crossrefs

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Count[Length/@Split[difac[n]],1],{n,100}]

A324971 Number of rooted identity trees with n vertices whose non-leaf terminal subtrees are not all different.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 4, 12, 31, 79, 192, 459, 1082, 2537, 5922, 13816, 32222, 75254, 176034, 412667, 969531, 2283278
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root.

Examples

			The a(6) = 1 through a(8) = 12 trees:
  ((o)((o)))  ((o)(o(o)))   (o(o)(o(o)))
              (o(o)((o)))   (((o))(o(o)))
              (((o)((o))))  (((o)(o(o))))
              ((o)(((o))))  ((o)((o(o))))
                            ((o)(o((o))))
                            ((o(o)((o))))
                            (o((o)((o))))
                            (o(o)(((o))))
                            ((((o)((o)))))
                            (((o))(((o))))
                            (((o)(((o)))))
                            ((o)((((o)))))
		

Crossrefs

The Matula-Goebel numbers of these trees are given by A324970.

Programs

  • Mathematica
    rits[n_]:=Join@@Table[Select[Union[Sort/@Tuples[rits/@ptn]],UnsameQ@@#&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[rits[n],!UnsameQ@@Cases[#,{},{0,Infinity}]&]],{n,10}]

A325543 Width (number of leaves) of the rooted tree with Matula-Goebel number n!.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 7, 9, 12, 14, 16, 17, 20, 22, 25, 27, 31, 33, 36, 39, 42, 45, 47, 49, 53, 55, 58, 61, 65, 67, 70, 71, 76, 78, 81, 84, 88, 91, 95, 98, 102, 104, 108, 111, 114, 117, 120, 122, 127, 131, 134, 137, 141, 145, 149, 151, 156, 160, 163, 165, 169, 172
Offset: 0

Views

Author

Gus Wiseman, May 09 2019

Keywords

Comments

Also the multiplicity of q(1) in the factorization of n! into factors q(i) = prime(i)/i. For example, the factorization of 7! is q(1)^9 * q(2)^3 * q(3) * q(4), so a(7) = 9.

Examples

			Matula-Goebel trees of the first 9 factorial numbers are:
  0!: o
  1!: o
  2!: (o)
  3!: (o(o))
  4!: (ooo(o))
  5!: (ooo(o)((o)))
  6!: (oooo(o)(o)((o)))
  7!: (oooo(o)(o)((o))(oo))
  8!: (ooooooo(o)(o)((o))(oo))
The number of leaves is the number of o's, which are (1, 1, 1, 2, 4, 5, 7, 9, 12, ...), as required.
		

Crossrefs

Programs

  • Mathematica
    mglv[n_]:=If[n==1,1,Total[Cases[FactorInteger[n],{p_,k_}:>mglv[PrimePi[p]]*k]]];
    Table[mglv[n!],{n,0,100}]

Formula

For n > 1, a(n) = - 1 + Sum_{k = 1..n} A109129(k).

A325615 Sorted q-signature of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 1, 2, 2, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 1, 4, 2, 2, 2, 1, 1, 3, 3, 3, 1, 4, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Row n is the multiset of nonzero multiplicities in the q-factorization of n. For example, row 11 is (1,1,1,1) and row 360 is (1,3,6).

Examples

			Triangle begins:
  {}
  1
  1 1
  2
  1 1 1
  1 2
  1 2
  3
  2 2
  1 1 2
  1 1 1 1
  1 3
  1 1 2
  1 3
  1 2 2
  4
  1 1 2
  2 3
  1 3
  1 1 3
		

Crossrefs

Row lengths are A324923.
Row sums are A196050.
Row-maxima are A109129.

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Sort[Length/@Split[difac[n]]],{n,30}]

A325661 q-powerful numbers. Numbers whose factorization into factors prime(i)/i has no factor of multiplicity 1.

Original entry on oeis.org

1, 4, 8, 9, 16, 18, 25, 27, 32, 36, 49, 50, 54, 64, 72, 75, 81, 98, 100, 108, 121, 125, 128, 144, 150, 162, 169, 196, 200, 216, 225, 242, 243, 250, 256, 288, 289, 300, 324, 338, 343, 361, 363, 375, 392, 400, 432, 441, 450, 484, 486, 500, 507, 512, 529, 576
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

First differs from A070003 in having 1 and lacking 147.
Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Also Matula-Goebel numbers of rooted trees with no terminal subtree appearing at only one place in the tree.

Examples

			The sequence of terms together with their q-signatures begins:
    1: {}
    4: {2}
    8: {3}
    9: {2,2}
   16: {4}
   18: {3,2}
   25: {2,2,2}
   27: {3,3}
   32: {5}
   36: {4,2}
   49: {4,2}
   50: {3,2,2}
   54: {4,3}
   64: {6}
   72: {5,2}
   75: {3,3,2}
   81: {4,4}
   98: {5,2}
  100: {4,2,2}
		

Crossrefs

Matula-Goebel numbers: A007097, A061775, A109129, A196050, A317713.
q-factorization: A324922, A324923, A324924, A325615, A325660.

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Select[Range[100],Count[Length/@Split[difac[#]],1]==0&]

A324933 Denominator in the division of n by the product of prime indices of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 4, 3, 5, 1, 6, 2, 2, 1, 7, 2, 8, 3, 8, 5, 9, 1, 9, 3, 8, 1, 10, 1, 11, 1, 10, 7, 12, 1, 12, 4, 4, 3, 13, 4, 14, 5, 4, 9, 15, 1, 16, 9, 14, 3, 16, 4, 3, 1, 16, 5, 17, 1, 18, 11, 16, 1, 18, 5, 19, 7, 6, 6, 20, 1, 21, 6, 6, 2, 20, 2, 22, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of quotients n/A003963(n) begins: 1, 2, 3/2, 4, 5/3, 3, 7/4, 8, 9/4, 10/3, 11/5, 6, 13/6, 7/2, 5/2, 16, ...
		

Crossrefs

Programs

  • Mathematica
    Table[n/Times@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]^k],{n,100}]//Denominator
Previous Showing 11-20 of 28 results. Next