cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A354234 Triangle read by rows where T(n,k) is the number of integer partitions of n with at least one part divisible by k.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 5, 3, 1, 1, 7, 4, 2, 1, 1, 11, 7, 4, 2, 1, 1, 15, 10, 6, 3, 2, 1, 1, 22, 16, 9, 6, 3, 2, 1, 1, 30, 22, 14, 8, 5, 3, 2, 1, 1, 42, 32, 20, 13, 8, 5, 3, 2, 1, 1, 56, 44, 29, 18, 12, 7, 5, 3, 2, 1, 1, 77, 62, 41, 27, 17, 12, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 22 2022

Keywords

Comments

Also partitions of n with at least one part appearing k or more times. It would be interesting to have a bijective proof of this.

Examples

			Triangle begins:
   1
   2  1
   3  1  1
   5  3  1  1
   7  4  2  1  1
  11  7  4  2  1  1
  15 10  6  3  2  1  1
  22 16  9  6  3  2  1  1
  30 22 14  8  5  3  2  1  1
  42 32 20 13  8  5  3  2  1  1
  56 44 29 18 12  7  5  3  2  1  1
  77 62 41 27 17 12  7  5  3  2  1  1
For example, row n = 5 counts the following partitions:
  (5)      (32)    (32)   (41)  (5)
  (32)     (41)    (311)
  (41)     (221)
  (221)    (2111)
  (311)
  (2111)
  (11111)
At least one part appearing k or more times:
  (5)      (221)    (2111)   (11111)  (11111)
  (32)     (311)    (11111)
  (41)     (2111)
  (221)    (11111)
  (311)
  (2111)
  (11111)
		

Crossrefs

The complement is counted by A061199.
Differences of consecutive terms are A091602.
Column k = 1 is A000041.
Column k = 2 is A047967, ranked by A013929 and A324929.
Column k = 3 is A295341, ranked by A046099 and A354235.
Column k = 4 is A295342.
A000041 counts integer partitions, strict A000009.
A047966 counts uniform partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MemberQ[#/k,_?IntegerQ]&]],{n,1,15},{k,1,n}]
    - or -
    Table[Length[Select[IntegerPartitions[n],Max@@Length/@Split[#]>=k&]],{n,1,15},{k,1,n}]
  • PARI
    \\ here P(k,n) is partitions with no part divisible by k as g.f.
    P(k,n)={1/prod(i=1, n, 1 - if(i%k, x^i) + O(x*x^n))}
    M(n,m=n)={my(p=P(n+1,n)); Mat(vector(m, k, Col(p-P(k,n), -n) ))}
    { my(A=M(12)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Jan 19 2023

A366530 Heinz numbers of integer partitions of even numbers with at least one odd part.

Original entry on oeis.org

4, 10, 12, 16, 22, 25, 28, 30, 34, 36, 40, 46, 48, 52, 55, 62, 64, 66, 70, 75, 76, 82, 84, 85, 88, 90, 94, 100, 102, 108, 112, 115, 116, 118, 120, 121, 130, 134, 136, 138, 144, 146, 148, 154, 155, 156, 160, 165, 166, 172, 175, 184, 186, 187, 190, 192, 194, 196
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices are the following. Each multiset has even sum and at least one odd part.
    4: {1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   22: {1,5}
   25: {3,3}
   28: {1,1,4}
   30: {1,2,3}
   34: {1,7}
   36: {1,1,2,2}
   40: {1,1,1,3}
   46: {1,9}
   48: {1,1,1,1,2}
   52: {1,1,6}
   55: {3,5}
   62: {1,11}
   64: {1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A182616, even bisection of A086543.
Not requiring at least one odd part gives A300061.
Allowing partitions of odd numbers gives A366322.
A031368 lists primes of odd index.
A066207 ranks partitions with all even parts, counted by A035363.
A066208 ranks partitions with all odd parts, counted by A000009.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], EvenQ[Total[prix[#]]]&&Or@@OddQ/@prix[#]&]

A356931 Number of multiset partitions of the prime indices of n into multisets of odd numbers. Number of factorizations of n into members of A066208.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 0, 3, 0, 2, 1, 0, 0, 0, 0, 5, 1, 0, 0, 4, 0, 2, 1, 0, 2, 0, 0, 0, 0, 0, 1, 7, 0, 2, 0, 0, 0, 0, 0, 7, 1, 0, 0, 4, 0, 2, 1, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 11, 0, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 12, 0, 2, 1, 0, 2, 0
Offset: 1

Views

Author

Gus Wiseman, Sep 08 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(440) = 21 multiset partitions of {1,1,1,3,5}:
  {1}{1}{1}{3}{5}  {1}{1}{1}{35}  {1}{1}{135}  {1}{1135}  {11135}
                   {1}{1}{13}{5}  {1}{11}{35}  {11}{135}
                   {1}{11}{3}{5}  {11}{13}{5}  {111}{35}
                   {1}{1}{3}{15}  {1}{13}{15}  {113}{15}
                                  {11}{3}{15}  {13}{115}
                                  {1}{3}{115}  {3}{1115}
                                  {1}{5}{113}  {5}{1113}
                                  {3}{111}{5}
		

Crossrefs

Positions of 0's are A324929, complement A066208.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sum A001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A356069 counts gapless divisors, initial A356224 (complement A356225).
Other conditions: A050320, A050330, A356936, A322585, A356233, A356945.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],And@@(OddQ[Times@@primeMS[#]]&/@#)&]],{n,100}]

Formula

a(n) = 0 if n is in A324929, otherwise a(n) = A001055(n).

A366527 Number of integer partitions of 2n containing at least one even part.

Original entry on oeis.org

0, 1, 3, 7, 16, 32, 62, 113, 199, 339, 563, 913, 1453, 2271, 3496, 5308, 7959, 11798, 17309, 25151, 36225, 51748, 73359, 103254, 144363, 200568, 277007, 380437, 519715, 706412, 955587, 1286762, 1725186, 2303388, 3063159, 4058041, 5356431, 7045454, 9235841
Offset: 0

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

Also partitions of 2n with even product.

Examples

			The a(1) = 1 through a(4) = 16 partitions:
  (2)  (4)    (6)      (8)
       (22)   (42)     (44)
       (211)  (222)    (62)
              (321)    (332)
              (411)    (422)
              (2211)   (431)
              (21111)  (521)
                       (611)
                       (2222)
                       (3221)
                       (4211)
                       (22211)
                       (32111)
                       (41111)
                       (221111)
                       (2111111)
		

Crossrefs

This is the even bisection of A047967.
For odd instead of even parts we have A182616, ranks A366321 or A366528.
These partitions have ranks A366529, subset of A324929.
A000041 counts integer partitions, strict A000009.
A006477 counts partitions w/ at least one odd and even part, ranks A366532.
A086543 counts partitions of n not containing n/2, ranks A366319.
A086543 counts partitions w/o odds, ranks A366322, even bisection A182616.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],Or@@EvenQ/@#&]],{n,0,15}]

Formula

a(n) = A000041(2n) - A000009(2n).

A354235 Heinz numbers of integer partitions with at least one part divisible by 3.

Original entry on oeis.org

5, 10, 13, 15, 20, 23, 25, 26, 30, 35, 37, 39, 40, 45, 46, 47, 50, 52, 55, 60, 61, 65, 69, 70, 73, 74, 75, 78, 80, 85, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 110, 111, 113, 115, 117, 120, 122, 125, 130, 135, 137, 138, 140, 141, 143, 145, 146, 148, 150
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    5: {3}
   10: {1,3}
   13: {6}
   15: {2,3}
   20: {1,1,3}
   23: {9}
   25: {3,3}
   26: {1,6}
   30: {1,2,3}
   35: {3,4}
   37: {12}
   39: {2,6}
   40: {1,1,1,3}
   45: {2,2,3}
   46: {1,9}
   47: {15}
   50: {1,3,3}
   52: {1,1,6}
   55: {3,5}
   60: {1,1,2,3}
		

Crossrefs

For 4 instead of 3 we have A046101, counted by A295342.
This sequence ranks the partitions counted by A295341, compositions A335464.
For 2 instead of 3 we have A324929 (and A013929), counted by A047967.
A001222 counts prime factors with multiplicity, distinct A001221.
A004250 counts partitions with some part > 2, compositions A008466.
A004709 lists numbers divisible by no cube, counted by A000726.
A036966 lists 3-full numbers, counted by A100405.
A046099 lists non-cubefree numbers.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A354234 counts partitions of n with at least one part divisible by k.

Programs

  • Mathematica
    Select[Range[100],MemberQ[PrimePi/@First/@If[#==1,{},FactorInteger[#]]/3,_?IntegerQ]&]

A366529 Heinz numbers of integer partitions of even numbers with at least one even part.

Original entry on oeis.org

3, 7, 9, 12, 13, 19, 21, 27, 28, 29, 30, 36, 37, 39, 43, 48, 49, 52, 53, 57, 61, 63, 66, 70, 71, 75, 76, 79, 81, 84, 87, 89, 90, 91, 101, 102, 107, 108, 111, 112, 113, 116, 117, 120, 129, 130, 131, 133, 138, 139, 144, 147, 148, 151, 154, 156, 159, 163, 165
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   3: {2}
   7: {4}
   9: {2,2}
  12: {1,1,2}
  13: {6}
  19: {8}
  21: {2,4}
  27: {2,2,2}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  36: {1,1,2,2}
  37: {12}
  39: {2,6}
  43: {14}
  48: {1,1,1,1,2}
		

Crossrefs

The complement is counted by A047967.
For all even parts we have A066207, counted by A035363, odd A066208.
Not requiring an even part gives A300061.
For odd instead of even we have A300063.
Not requiring even sum gives A324929.
Partitions of this type are counted by A366527.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.
A257992 counts even prime indices, distinct A324967.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Total[prix[#]]]&&Or@@EvenQ/@prix[#]&]

A366532 Heinz numbers of integer partitions with at least one even and odd part.

Original entry on oeis.org

6, 12, 14, 15, 18, 24, 26, 28, 30, 33, 35, 36, 38, 42, 45, 48, 51, 52, 54, 56, 58, 60, 65, 66, 69, 70, 72, 74, 75, 76, 77, 78, 84, 86, 90, 93, 95, 96, 98, 99, 102, 104, 105, 106, 108, 112, 114, 116, 119, 120, 122, 123, 126, 130, 132, 135, 138, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

These partitions are counted by A006477.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   30: {1,2,3}
   33: {2,5}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   42: {1,2,4}
   45: {2,2,3}
   48: {1,1,1,1,2}
		

Crossrefs

These partitions are counted by A006477.
Just even: A324929, counted by A047967.
Just odd: A366322, counted by A086543 (even bisection of A182616).
A031368 lists primes of odd index, even A031215.
A066207 ranks partitions with all even parts, counted by A035363.
A066208 ranks partitions with all odd parts, counted by A000009.
A112798 lists prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.
A257992 counts even prime indices, distinct A324967.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Or@@EvenQ/@prix[#]&&Or@@OddQ/@prix[#]&]

Formula

Intersection of A324929 and A366322.

A347360 Numbers that can be represented as the sum of squares of 3 numbers and also equal to twice the sum of their joint products.

Original entry on oeis.org

18, 72, 98, 162, 288, 338, 392, 450, 648, 722, 882, 1152, 1352, 1458, 1568, 1800, 1922, 2178, 2450, 2592, 2738, 2888, 3042, 3528, 3698, 4050, 4608, 4802, 5202, 5408, 5832, 6272, 6498, 7200, 7442, 7688, 7938, 8450, 8712, 8978, 9522, 9800, 10368, 10658, 10952, 11250, 11552, 11858
Offset: 1

Views

Author

Alexander Kritov, Sep 22 2021

Keywords

Comments

Integers that can be represented as the sum of three squares of integers x, y, z, and additionally also satisfy x^2+y^2+z^2 = k *(x*y+ x*z + y*z), with k=2.
All possible k are given by A331605.

Examples

			For example, the third term (1,4,9) is 1^2+4^2+9^2 = 2*(1*4+1*9+4*9) = 98.
The sequence is given by
   a(n)    (x, y, z)
    18     (1,1,4)
    72     (2,2,8)
    98     (1,4,9)
   162     (3,3,12)
   288     (4,4,16)
   338     (1,9,16)
   392     (2,8,18)
   450     (5,5,20)
   648     (6,6,24)
   722     (4,9,25)
   882     (1,16,25) (3,12,27)  (7,7,28)
  1152     (8,8,32)  (2,18,32)
  1352     (2,18,32)
  1458     (9,9,36)
  1568     (4,16,36)
  1800     (10,10,40)
  1922     (1,25,36)
  2178     (11,11,44)
  2450     (5,20,45)
  2592     (12,12,48)
  2738     (9,16,49)
  2888     (8,18,50)
  3042     (3,27,48) (4,25,49) (13,13,52)
  3528     (2,32,50) (6,24,54)
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, NY, 1985.

Crossrefs

Subsequence of A000378. Complement of A004215.
Cf. A033428 (case k=1), A324929, A331605 (k-numbers).

Programs

  • Mathematica
    q[n_] := (s = Select[PowersRepresentations[n,3,2], AllTrue[#, #1 > 0 &]&]) != {} && MemberQ[(#[[1]]*#[[2]] + #[[2]]*#[[3]] + #[[3]]*#[[1]])& /@ s, n/2]; Select[Range[2, 12000, 2], q] (* Amiram Eldar, Oct 03 2021 *)

Formula

Empirically, such numbers appear to be a(n) = 2*b_n^2 where b_n are numbers whose product of prime indices is even (A324929).The triplet (x,y,x) is always (n*k^2, n*m^2, n*p^2).
Previous Showing 11-18 of 18 results.