cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 172 results. Next

A325558 Number of compositions of n with equal circular differences up to sign.

Original entry on oeis.org

1, 2, 4, 5, 6, 10, 8, 16, 13, 16, 18, 32, 20, 30, 30, 57, 34, 52, 46, 96, 74, 86, 84, 174, 119, 170, 192, 306, 244, 332, 372, 628, 560, 694, 812, 1259, 1228, 1566, 1852, 2696, 2806, 3538, 4260, 5894, 6482, 8098, 9890, 13392, 15049, 18706, 23018, 30298, 35198
Offset: 1

Views

Author

Gus Wiseman, May 11 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2).

Examples

			The a(1) = 1 through a(8) = 16 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (21)   (22)    (23)     (24)      (25)       (26)
             (111)  (31)    (32)     (33)      (34)       (35)
                    (1111)  (41)     (42)      (43)       (44)
                            (11111)  (51)      (52)       (53)
                                     (222)     (61)       (62)
                                     (1212)    (1111111)  (71)
                                     (2121)               (1232)
                                     (111111)             (1313)
                                                          (2123)
                                                          (2222)
                                                          (2321)
                                                          (3131)
                                                          (3212)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Abs[Differences[Append[#,First[#]]]]&]],{n,15}]
  • PARI
    step(R,n,s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
    w(n,k,s)={my(R=matrix(n,n,i,j,i==j&&abs(i-k)==s), t=0); while(R, R=step(R,n,s); t+=R[n,k]); t}
    a(n) = {numdiv(max(1,n)) + sum(s=1, n-1, sum(k=1, n, w(n,k,s)))} \\ Andrew Howroyd, Aug 22 2019

Extensions

a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 22 2019

A332744 Number of integer partitions of n whose negated first differences (assuming the last part is zero) are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 7, 12, 17, 28, 39, 55, 77, 107, 142, 194, 254, 332, 434, 563, 716, 919, 1162, 1464, 1841, 2305, 2857, 3555, 4383, 5394, 6617, 8099, 9859, 12006, 14551, 17600, 21236, 25574, 30688, 36809, 44007, 52527, 62574, 74430, 88304, 104675, 123799
Offset: 0

Views

Author

Gus Wiseman, Feb 27 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(4) = 1 through a(9) = 17 partitions:
  (211)  (311)   (411)    (322)     (422)      (522)
         (2111)  (2211)   (511)     (611)      (711)
                 (3111)   (3211)    (3221)     (3222)
                 (21111)  (4111)    (3311)     (4221)
                          (22111)   (4211)     (4311)
                          (31111)   (5111)     (5211)
                          (211111)  (22211)    (6111)
                                    (32111)    (32211)
                                    (41111)    (33111)
                                    (221111)   (42111)
                                    (311111)   (51111)
                                    (2111111)  (222111)
                                               (321111)
                                               (411111)
                                               (2211111)
                                               (3111111)
                                               (21111111)
For example, the partition y = (4,2,1,1,1) has negated 0-appended first differences (2,1,0,0,1), which is not unimodal, so y is counted under a(9).
		

Crossrefs

The complement is counted by A332728.
The non-negated version is A332284.
The strict case is A332579.
The case of run-lengths (instead of differences) is A332639.
The Heinz numbers of these partitions are A332832.
Unimodal compositions are A001523.
Non-unimodal compositions are A115981.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
Compositions whose negation is unimodal are A332578.
Numbers whose negated prime signature is not unimodal are A332642.
Compositions whose negation is not unimodal are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],!unimodQ[-Differences[Append[#,0]]]&]],{n,0,30}]

A342515 Number of strict partitions of n with constant (equal) first-quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 4, 5, 5, 6, 6, 8, 8, 9, 8, 9, 9, 11, 10, 13, 11, 12, 12, 13, 14, 14, 15, 15, 16, 18, 16, 17, 17, 19, 18, 20, 20, 22, 21, 21, 23, 23, 22, 24, 23, 24, 24, 27, 25, 26, 27, 27, 27, 28, 29, 31, 29, 30, 31, 32, 33, 35, 32, 35, 33, 35, 34, 35
Offset: 0

Views

Author

Gus Wiseman, Mar 19 2021

Keywords

Comments

Also the number of reversed strict partitions of n with constant (equal) first-quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the quotients of (6,3,1) are (1/2,1/3).

Examples

			The a(1) = 1 through a(15) = 9 partitions (A..F = 10..15):
  1   2   3    4    5    6    7     8    9    A    B    C    D     E     F
          21   31   32   42   43    53   54   64   65   75   76    86    87
                    41   51   52    62   63   73   74   84   85    95    96
                              61    71   72   82   83   93   94    A4    A5
                              421        81   91   92   A2   A3    B3    B4
                                                   A1   B1   B2    C2    C3
                                                             C1    D1    D2
                                                             931   842   E1
                                                                         8421
		

Crossrefs

The version for differences instead of quotients is A049980.
The non-strict ordered version is A342495.
The non-strict version is A342496.
The distinct instead of equal version is A342520.
A000005 counts constant partitions.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A154402 counts partitions with adjacent parts x = 2y.
A167865 counts strict chains of divisors > 1 summing to n.
A175342 counts compositions with equal differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]

A364673 Number of (necessarily strict) integer partitions of n containing all of their own first differences.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 2, 2, 5, 2, 2, 4, 2, 3, 6, 4, 4, 8, 4, 4, 10, 8, 7, 8, 13, 9, 15, 12, 13, 17, 20, 15, 31, 24, 27, 32, 33, 32, 50, 42, 45, 53, 61, 61, 85, 76, 86, 101, 108, 118, 137, 141, 147, 179, 184, 196, 222, 244, 257, 295, 324, 348, 380, 433
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2023

Keywords

Examples

			The partition y = (12,6,3,2,1) has differences (6,3,1,1), and {1,3,6} is a subset of {1,2,3,6,12}, so y is counted under a(24).
The a(n) partitions for n = 1, 3, 6, 12, 15, 18, 21:
  (1)  (3)    (6)      (12)       (15)         (18)         (21)
       (2,1)  (4,2)    (8,4)      (10,5)       (12,6)       (14,7)
              (3,2,1)  (6,4,2)    (8,4,2,1)    (9,6,3)      (12,6,3)
                       (5,4,2,1)  (5,4,3,2,1)  (6,5,4,2,1)  (8,6,4,2,1)
                       (6,3,2,1)               (7,5,3,2,1)  (9,5,4,2,1)
                                               (8,4,3,2,1)  (9,6,3,2,1)
                                                            (10,5,3,2,1)
                                                            (6,5,4,3,2,1)
		

Crossrefs

Containing all differences: A007862.
Containing no differences: A364464, strict complement A364536.
Containing at least one difference: A364467, complement A363260.
For subsets of {1..n} we have A364671, complement A364672.
A non-strict version is A364674.
For submultisets instead of subsets we have A364675.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions w/o re-used parts, complement A237113.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SubsetQ[#,-Differences[#]]&]],{n,0,30}]
  • Python
    from collections import Counter
    def A364673_list(maxn):
        count = Counter()
        for i in range(maxn//3):
            A,f,i = [[(i+1, )]],0,0
            while f == 0:
                A.append([])
                for j in A[i]:
                    for k in j:
                        x = j + (j[-1] + k, )
                        y = sum(x)
                        if y <= maxn:
                            A[i+1].append(x)
                            count.update({y})
                if len(A[i+1]) < 1: f += 1
                i += 1
        return [count[z]+1 for z in range(maxn+1)] # John Tyler Rascoe, Mar 09 2024

A384881 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive parts decreasing by 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 3, 0, 1, 0, 2, 2, 2, 0, 1, 0, 2, 3, 3, 2, 0, 1, 0, 2, 5, 3, 2, 2, 0, 1, 0, 1, 8, 4, 4, 2, 2, 0, 1, 0, 3, 5, 10, 4, 3, 2, 2, 0, 1, 0, 2, 9, 9, 9, 5, 3, 2, 2, 0, 1, 0, 2, 11, 13, 9, 9, 4, 3, 2, 2, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 25 2025

Keywords

Examples

			The partition (5,4,2,1,1) has maximal runs ((5,4),(2,1),(1)) so is counted under T(13,3) = 23.
Row n = 9 counts the following partitions:
  9    63    333    6111    33111   411111   3111111   111111111
  54   72    441    22221   51111   2211111  21111111
  432  81    522    42111   222111
       621   531    321111
       3321  711
             3222
             4221
             4311
             5211
             32211
Triangle begins:
  1
  0  1
  0  1  1
  0  2  0  1
  0  1  3  0  1
  0  2  2  2  0  1
  0  2  3  3  2  0  1
  0  2  5  3  2  2  0  1
  0  1  8  4  4  2  2  0  1
  0  3  5 10  4  3  2  2  0  1
  0  2  9  9  9  5  3  2  2  0  1
  0  2 11 13  9  9  4  3  2  2  0  1
  0  2 13 15 17  8 10  4  3  2  2  0  1
  0  2 14 23 16 17  8  9  4  3  2  2  0  1
  0  2 16 26 26 19 16  9  9  4  3  2  2  0  1
  0  4 13 37 32 26 19 16  8  9  4  3  2  2  0  1
		

Crossrefs

Row sums are A000041.
Column k = 1 is A001227.
For distinct parts instead of maximal runs we have A116608.
The strict case appears to be A116674.
For anti-runs instead of runs we have A268193.
Partitions with distinct runs of this type are counted by A384882, gapless A384884.
For prime indices see A385213, A287170, A066205, A356229.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1==#2+1&]]==k&]],{n,0,10},{k,0,n}]
  • PARI
    tri(n) = {(n*(n+1)/2)}
    B_list(N) = {my(v = vector(N, i, 0)); v[1] = q*t; for(m=2,N, v[m] = t * (q^tri(m) + sum(i=1,m-1, q^tri(i) * v[m-i] * (q^((m-i)*(i-1))/(1 - q^(m-i)) - q^((m-i)*i) + O('q^(N-tri(i)+1)))))); v}
    A_qt(max_row) = {my(N = max_row+1, B = B_list(N), g = 1 + sum(m=1,N, B[m]/(1 - q^m)) + O('q^(N+1))); vector(N, n, Vecrev(polcoeff(g, n-1)))} \\ John Tyler Rascoe, Aug 18 2025

Formula

G.f.: 1 + Sum_{m>0} B(m,q,t)/(1 - q^m) where B(m,q,t) = t * (q^tri(m) + Sum_{i=1..m-1} q^tri(i) * B(m-i,q,t) * ((q^((m-i)*(i-1))/(1 - q^(m-i))) - q^((m-i)*i))) and tri(n) = A000217(n). - John Tyler Rascoe, Aug 18 2025

A325397 Heinz numbers of integer partitions whose k-th differences are weakly decreasing for all k >= 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 89
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

First differs from A325361 in lacking 150.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The enumeration of these partitions by sum is given by A325353.

Examples

			Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   72: {1,1,1,2,2}
   76: {1,1,8}
   78: {1,2,6}
   80: {1,1,1,1,3}
The first partition that has weakly decreasing differences (A320466, A325361) but is not represented in this sequence is (3,3,2,1), which has Heinz number 150 and whose first and second differences are (0,-1,-1) and (-1,0) respectively.
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],And@@Table[GreaterEqual@@Differences[primeptn[#],k],{k,0,PrimeOmega[#]}]&]

A383532 Heinz numbers of integer partitions with distinct multiplicities (Wilf) and distinct nonzero 0-appended differences (conjugate Wilf).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 20, 23, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 49, 50, 52, 53, 56, 59, 61, 64, 67, 68, 71, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 97, 98, 99, 101, 103, 104, 107, 109, 112, 113, 116, 117, 121, 124, 125
Offset: 1

Views

Author

Gus Wiseman, May 15 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
		

Crossrefs

Partitions of this type are counted by A383507.
Negating both sides gives A383531, counted by A383530.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
A122111 represents conjugation in terms of Heinz numbers.
A325324 counts integer partitions with distinct 0-appended differences, ranks A325367.
A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
A383709 counts Wilf partitions with distinct 0-appended differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    paug[y_]:=-DeleteCases[Differences[Append[y,0]],0];
    Select[Range[100], UnsameQ@@Last/@FactorInteger[#] && UnsameQ@@paug[Reverse[prix[#]]]&]

Formula

Equals A130091 /\ A383512.

A383534 Irregular triangle read by rows where row n lists the positive first differences of the 0-prepended prime indices of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 2, 5, 1, 1, 6, 1, 3, 2, 1, 1, 7, 1, 1, 8, 1, 2, 2, 2, 1, 4, 9, 1, 1, 3, 1, 5, 2, 1, 3, 10, 1, 1, 1, 11, 1, 2, 3, 1, 6, 3, 1, 1, 1, 12, 1, 7, 2, 4, 1, 2, 13, 1, 1, 2, 14, 1, 4, 2, 1, 1, 8, 15, 1, 1, 4, 1, 2, 2, 5, 1, 5, 16, 1, 1, 3, 2
Offset: 1

Views

Author

Gus Wiseman, May 20 2025

Keywords

Comments

Also differences of distinct 0-prepended prime indices of n.

Examples

			The prime indices of 140 are {1,1,3,4}, zero prepended {0,1,1,3,4}, differences (1,0,2,1), positive (1,2,1).
Rows begin:
    1: ()        16: (1)        31: (11)
    2: (1)       17: (7)        32: (1)
    3: (2)       18: (1,1)      33: (2,3)
    4: (1)       19: (8)        34: (1,6)
    5: (3)       20: (1,2)      35: (3,1)
    6: (1,1)     21: (2,2)      36: (1,1)
    7: (4)       22: (1,4)      37: (12)
    8: (1)       23: (9)        38: (1,7)
    9: (2)       24: (1,1)      39: (2,4)
   10: (1,2)     25: (3)        40: (1,2)
   11: (5)       26: (1,5)      41: (13)
   12: (1,1)     27: (2)        42: (1,1,2)
   13: (6)       28: (1,3)      43: (14)
   14: (1,3)     29: (10)       44: (1,4)
   15: (2,1)     30: (1,1,1)    45: (2,1)
		

Crossrefs

Row-lengths are A001221, sums A061395.
Rows start with A055396, end with A241919.
For multiplicities instead of differences we have A124010 (prime signature).
Including difference 0 gives A287352, without prepending A355536.
Positions of first appearances of rows are A358137.
Positions of strict rows are A383512, counted by A098859.
Positions of non-strict rows are A383513, counted by A336866.
Heinz numbers of rows are A383535.
Restricting to rows of squarefree index gives A384008.
Without prepending we get A384009.
A000040 lists the primes, differences A001223.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A320348 counts strict partitions with distinct 0-appended differences, ranks A325388.
A325324 counts partitions with distinct 0-appended differences, ranks A325367.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[DeleteCases[Differences[Prepend[prix[n],0]],0],{n,100}]

Formula

a(A005117(n)) = A384008(n).

A320510 Number of partitions of n such that the successive differences of consecutive parts are decreasing, and first difference < first part.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 3, 4, 3, 4, 6, 3, 5, 6, 5, 6, 9, 5, 7, 9, 8, 8, 11, 8, 11, 13, 10, 12, 15, 11, 15, 16, 14, 16, 21, 15, 20, 22, 18, 21, 26, 21, 24, 28, 25, 28, 33, 26, 32, 34, 33, 36, 40, 34, 40, 45, 40, 43, 49, 43, 52, 54, 49, 54, 62, 56, 62, 64, 61, 67, 75, 66
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check visually if written in ascending order.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1). Then a(n) is the number of integer partitions of n whose differences (with the last part taken to be 0) are strictly decreasing. The Heinz numbers of these partitions are given by A325461. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are strictly decreasing, which is the author's interpretation. - Gus Wiseman, May 04 2019

Examples

			There are a(29) = 13 such partitions of 29:
01: [29]
02: [10, 19]
03: [11, 18]
04: [12, 17]
05: [13, 16]
06: [14, 15]
07: [6, 10, 13]
08: [6, 11, 12]
09: [7, 10, 12]
10: [7, 11, 11]
11: [8, 10, 11]
12: [9, 10, 10]
13: [4, 7, 9, 9]
There are a(30) = 10 such partitions of 30:
01: [30]
02: [11, 19]
03: [12, 18]
04: [13, 17]
05: [14, 16]
06: [15, 15]
07: [6, 11, 13]
08: [7, 11, 12]
09: [8, 11, 11]
10: [4, 7, 9, 10]
		

Crossrefs

Cf. A320385 (distinct parts, decreasing, and first difference < first part).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Greater@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0 && ary0.uniq == ary0
      }
      cnt
    end
    def A320510(n)
      (0..n).map{|i| f(i)}
    end
    p A320510(50)

A325461 Heinz numbers of integer partitions with strictly decreasing differences (with the last part taken to be 0).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 75, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A320510.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   15: {2,3}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   35: {3,4}
   37: {12}
   41: {13}
   43: {14}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Greater@@Differences[Append[primeptn[#],0]]&]
Previous Showing 101-110 of 172 results. Next