cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 55 results. Next

A325790 Number of permutations of {1..n} such that every positive integer from 1 to n * (n + 1)/2 is the sum of some circular subsequence.

Original entry on oeis.org

1, 1, 2, 6, 16, 100, 492, 1764, 8592, 71208, 395520, 1679480, 9313128, 72154030, 420375872, 1625653650
Offset: 0

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A circular subsequence is a sequence of consecutive non-overlapping terms where the last and first parts are also considered consecutive. The only circular subsequence of maximum length is the sequence itself (not any rotation of it). For example, the circular subsequences of (2,1,3) are: (), (1), (2), (3), (1,3), (2,1), (3,2), (2,1,3).

Examples

			The a(1) = 1 through a(4) = 16 permutations:
  (1)  (1,2)  (1,2,3)  (1,2,3,4)
       (2,1)  (1,3,2)  (1,3,2,4)
              (2,1,3)  (1,4,2,3)
              (2,3,1)  (1,4,3,2)
              (3,1,2)  (2,1,4,3)
              (3,2,1)  (2,3,1,4)
                       (2,3,4,1)
                       (2,4,1,3)
                       (3,1,4,2)
                       (3,2,1,4)
                       (3,2,4,1)
                       (3,4,1,2)
                       (4,1,2,3)
                       (4,1,3,2)
                       (4,2,3,1)
                       (4,3,2,1)
		

Crossrefs

Programs

  • Mathematica
    subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
    Table[Length[Select[Permutations[Range[n]],Range[n*(n+1)/2]==Union[Total/@subalt[#]]&]],{n,0,5}]
  • PARI
    weigh(p)={my(b=0); for(i=1, #p, my(s=0,j=i); for(k=1, #p, s+=p[j]; if(!bittest(b,s), b=bitor(b,1<Andrew Howroyd, Aug 16 2019

Extensions

a(10)-a(12) from Andrew Howroyd, Aug 18 2019
a(13)-a(15) from Bert Dobbelaere, Nov 01 2020

A325988 Number of covering (or complete) factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 30 2019

Keywords

Comments

First differs from A072911 at a(64) = 5, A072911(64) = 4.
A covering factorization of n is an orderless factorization of n into factors > 1 such that every divisor of n is the product of some submultiset of the factors.

Examples

			The a(64) = 5 factorizations:
  (2*2*2*2*2*2)
  (2*2*2*2*4)
  (2*2*2*8)
  (2*2*4*4)
  (2*4*8)
The a(96) = 4 factorizations:
  (2*2*2*2*2*3)
  (2*2*2*3*4)
  (2*2*3*8)
  (2*3*4*4)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Union[Times@@@Subsets[#]]==Divisors[n]&]],{n,100}]

Formula

a(2^n) = A126796(n).

A353743 Least number with run-sum trajectory of length k; a(0) = 1.

Original entry on oeis.org

1, 2, 4, 12, 84, 1596, 84588, 11081028, 3446199708, 2477817590052, 4011586678294188, 14726534696017964148, 120183249654202605411828, 2146833388573021140471483564, 83453854313999050793547980583372, 7011542477899258250521520684673165324
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832, A353847) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 corresponds to the partitions (2,1,1) -> (2,2) -> (4).

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
     12: {1,1,2}
     84: {1,1,2,4}
   1596: {1,1,2,4,8}
  84588: {1,1,2,4,8,16}
		

Crossrefs

The ordered version is A072639, for run-lengths A333629.
The version for run-lengths is A325278, firsts in A182850 or A323014.
The run-sum trajectory is the iteration of A353832.
The first length-k row of A353840 has index a(k).
Other sequences pertaining to this trajectory are A353841-A353846.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Join[{1,2},Table[2*Product[Prime[2^k],{k,0,n}],{n,0,6}]]

Formula

a(n > 1) = 2 * Product_{k=0..n-2} prime(2^k).
a(n > 0) = 2 * A325782(n).

A325801 Number of divisors of n minus the number of distinct positive subset-sums of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). A positive subset-sum of an integer partition is any sum of a nonempty submultiset of it.

Crossrefs

Positions of 0's are A299702.
Positions of 1's are A325802.
Positions of positive integers are A299729.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p] k]];
    Table[DivisorSigma[0,n]-Length[Union[hwt/@Divisors[n]]],{n,100}]
  • PARI
    A325801(n) = (numdiv(n) - A299701(n));
    A299701(n) = { my(f = factor(n), pids = List([])); for(i=1,#f~, while(f[i,2], f[i,2]--; listput(pids,primepi(f[i,1])))); pids = Vec(pids); my(sv=vector(vecsum(pids))); for(b=1,(2^length(pids))-1,sv[sumbybits(pids,b)] = 1); 1+vecsum(sv); }; \\ Not really an optimal way to count these.
    sumbybits(v,b) = { my(s=0,i=1); while(b>0,s += (b%2)*v[i]; i++; b >>= 1); (s); }; \\ Antti Karttunen, May 26 2019

Formula

a(n) = A000005(n) - A299701(n).

A325986 Heinz numbers of complete strict integer partitions.

Original entry on oeis.org

1, 2, 6, 30, 42, 210, 330, 390, 462, 510, 546, 714, 798, 2310, 2730, 3570, 3990, 4290, 4830, 5610, 6006, 6090, 6270, 6510, 6630, 7410, 7590, 7854, 8778, 8970, 9282, 9570, 9690, 10230, 10374, 10626, 11310, 11730, 12090, 12210, 12558, 13398, 13566, 14322, 14430
Offset: 1

Views

Author

Gus Wiseman, May 30 2019

Keywords

Comments

Strict partitions are counted by A000009, while complete partitions are counted by A126796.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
An integer partition of n is complete (A126796, A325781) if every number from 0 to n is the sum of some submultiset of the parts.
The enumeration of these partitions by sum is given by A188431.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      6: {1,2}
     30: {1,2,3}
     42: {1,2,4}
    210: {1,2,3,4}
    330: {1,2,3,5}
    390: {1,2,3,6}
    462: {1,2,4,5}
    510: {1,2,3,7}
    546: {1,2,4,6}
    714: {1,2,4,7}
    798: {1,2,4,8}
   2310: {1,2,3,4,5}
   2730: {1,2,3,4,6}
   3570: {1,2,3,4,7}
   3990: {1,2,3,4,8}
   4290: {1,2,3,5,6}
   4830: {1,2,3,4,9}
   5610: {1,2,3,5,7}
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p] k]];
    Select[Range[1000],SquareFreeQ[#]&&Union[hwt/@Divisors[#]]==Range[0,hwt[#]]&]

Formula

Intersection of A005117 (strict partitions) and A325781 (complete partitions).

A326036 Number of uniform complete integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 2, 2, 2, 2, 6, 3, 3, 5, 5, 3, 8, 5, 11, 10, 10, 9, 19, 13, 15, 17, 21, 18, 35, 26, 39, 40, 50, 50, 77, 63, 84, 88, 113, 103, 146, 132, 171, 180, 212, 214, 292, 276, 345, 363, 435, 442, 561, 569, 694, 729, 853, 891, 1108
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2019

Keywords

Comments

An integer partition of n is uniform if all parts appear with the same multiplicity, and complete if every nonnegative integer up to n is the sum of some submultiset.

Examples

			The initial terms count the following partitions:
   0: ()
   1: (1)
   2: (11)
   3: (21)
   3: (111)
   4: (1111)
   5: (11111)
   6: (321)
   6: (2211)
   6: (111111)
   7: (421)
   7: (1111111)
   8: (3311)
   8: (11111111)
   9: (222111)
   9: (111111111)
  10: (4321)
  10: (1111111111)
  11: (5321)
  11: (11111111111)
		

Crossrefs

Programs

  • Mathematica
    sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
    Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#]&&Sort[sums[Sort[#]]]==Range[Total[#]]&]],{n,0,30}]

A365919 Heinz numbers of integer partitions with the same number of distinct positive subset-sums as distinct non-subset-sums.

Original entry on oeis.org

1, 3, 9, 21, 22, 27, 63, 76, 81, 117, 147, 175, 186, 189, 243, 248, 273, 286, 290, 322, 345, 351, 399, 418, 441, 513, 516, 567, 688, 715, 729, 819, 1029, 1053, 1062, 1156, 1180, 1197, 1323, 1375, 1416, 1484, 1521, 1539, 1701, 1827, 1888, 1911, 2068, 2115, 2130
Offset: 1

Views

Author

Gus Wiseman, Sep 25 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
     1: {}
     3: {2}
     9: {2,2}
    21: {2,4}
    22: {1,5}
    27: {2,2,2}
    63: {2,2,4}
    76: {1,1,8}
    81: {2,2,2,2}
   117: {2,2,6}
   147: {2,4,4}
   175: {3,3,4}
   186: {1,2,11}
   189: {2,2,2,4}
   243: {2,2,2,2,2}
		

Crossrefs

The LHS is A304793, counted by A365658, with empty sets A299701.
The RHS is A325799, counted by A365923 (strict A365545).
A046663 counts partitions without a subset summing to k, strict A365663.
A056239 adds up prime indices, row sums of A112798.
A276024 counts positive subset-sums of partitions, strict A284640.
A325781 ranks complete partitions, counted by A126796.
A365830 ranks incomplete partitions, counted by A365924.
A365918 counts non-subset-sums of partitions, strict A365922.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    smu[y_]:=Union[Total/@Rest[Subsets[y]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Select[Range[100],Length[smu[prix[#]]]==Length[nmz[prix[#]]]&]

Formula

Positive integers k such that A304793(k) = A325799(k).

A325786 Number of complete necklace compositions of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 7, 12, 19, 41, 71, 141, 255, 509, 924, 1882, 3395, 6838, 12715, 25233, 47049
Offset: 1

Views

Author

Gus Wiseman, May 22 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. A circular subsequence is a sequence of consecutive terms where the first and last parts are also considered consecutive. A necklace composition of n is complete if every positive integer from 1 to n is the sum of some circular subsequence.

Examples

			The a(1) = 1 through a(8) = 19 necklace compositions:
  (1)  (11)  (12)   (112)   (113)    (123)     (124)      (1124)
             (111)  (1111)  (122)    (132)     (142)      (1133)
                            (1112)   (1113)    (1114)     (1142)
                            (11111)  (1122)    (1123)     (1214)
                                     (1212)    (1132)     (1223)
                                     (11112)   (1213)     (1322)
                                     (111111)  (1222)     (11114)
                                               (11113)    (11123)
                                               (11122)    (11132)
                                               (11212)    (11213)
                                               (111112)   (11222)
                                               (1111111)  (11312)
                                                          (12122)
                                                          (111113)
                                                          (111122)
                                                          (111212)
                                                          (112112)
                                                          (1111112)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&Union[Total/@subalt[#]]==Range[n]&]],{n,15}]

A325802 Numbers with one more divisor than distinct subset-sums of their prime indices.

Original entry on oeis.org

12, 30, 40, 63, 70, 112, 154, 165, 198, 220, 273, 286, 325, 351, 352, 364, 442, 525, 550, 561, 595, 646, 675, 714, 741, 748, 765, 832, 850, 874, 918, 931, 952, 988, 1045, 1173, 1254, 1334, 1425, 1495, 1539, 1564, 1653, 1666, 1672, 1771, 1794, 1798, 1870, 1900
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A subset-sum of an integer partition is any sum of a submultiset of it.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the partitions counted by A325835.

Examples

			The sequence of terms together with their prime indices begins:
   12: {1,1,2}
   30: {1,2,3}
   40: {1,1,1,3}
   63: {2,2,4}
   70: {1,3,4}
  112: {1,1,1,1,4}
  154: {1,4,5}
  165: {2,3,5}
  198: {1,2,2,5}
  220: {1,1,3,5}
  273: {2,4,6}
  286: {1,5,6}
  325: {3,3,6}
  351: {2,2,2,6}
  352: {1,1,1,1,1,5}
  364: {1,1,4,6}
  442: {1,6,7}
  525: {2,3,3,4}
  550: {1,3,3,5}
  561: {2,5,7}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,t,S,i;
      F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]);
      S:= {0}:
      for t in F do
       S:= map(s -> seq(s + i*t[1],i=0..t[2]),S);
      od;
      nops(S) = mul(t[2]+1,t=F)-1
    end proc:
    select(filter, [$1..2000]); # Robert Israel, Oct 30 2024
  • Mathematica
    Select[Range[100],DivisorSigma[0,#]==1+Length[Union[hwt/@Divisors[#]]]&]

Formula

A000005(a(n)) = 1 + A299701(a(n)).

A367402 Number of integer partitions of n whose semi-sums cover an interval of positive integers.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 10, 13, 17, 20, 26, 31, 38, 44, 58, 64, 81, 95, 116, 137, 166, 192, 233, 278, 330, 385, 459, 542, 636, 759, 879, 1038, 1211, 1418, 1656, 1942, 2242, 2618, 3029, 3535, 4060, 4735, 5429, 6299, 7231, 8346, 9556, 11031, 12593, 14482, 16525
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (3,2,1,1) has semi-sums {2,3,4,5}, which is an interval, so y is counted under a(7).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (221)    (51)      (61)       (62)
                    (1111)  (2111)   (222)     (322)      (71)
                            (11111)  (321)     (2221)     (332)
                                     (2211)    (3211)     (2222)
                                     (21111)   (22111)    (3221)
                                     (111111)  (211111)   (22211)
                                               (1111111)  (32111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of sums we have A034296, ranks A073491.
For all subset-sums we have A126796, ranks A325781, strict A188431.
The complement for parts instead of sums is A239955, ranks A073492.
The complement for all sub-sums is A365924, ranks A365830, strict A365831.
The complement is counted by A367403.
The strict case is A367410, complement A367411.
A000009 counts partitions covering an initial interval, ranks A055932.
A086971 counts semi-sums of prime indices.
A261036 counts complete partitions by maximum.
A276024 counts positive subset-sums of partitions, strict A284640.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], (d=Total/@Subsets[#,{2}];If[d=={}, {}, Range[Min@@d,Max@@d]]==Union[d])&]], {n,0,15}]
Previous Showing 31-40 of 55 results. Next