cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A271654 a(n) = Sum_{k|n} binomial(n-1,k-1).

Original entry on oeis.org

1, 2, 2, 5, 2, 17, 2, 44, 30, 137, 2, 695, 2, 1731, 1094, 6907, 2, 30653, 2, 97244, 38952, 352739, 2, 1632933, 10628, 5200327, 1562602, 20357264, 2, 87716708, 2, 303174298, 64512738, 1166803145, 1391282, 4978661179, 2, 17672631939, 2707475853, 69150651910, 2, 286754260229, 2, 1053966829029, 115133177854, 4116715363847, 2, 16892899722499, 12271514, 63207357886437
Offset: 1

Views

Author

Keywords

Comments

Also the number of compositions of n whose length divides n, i.e., compositions with integer mean, ranked by A096199. - Gus Wiseman, Sep 28 2022

Examples

			From _Gus Wiseman_, Sep 28 2022: (Start)
The a(1) = 1 through a(6) = 17 compositions with integer mean:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,1,1)  (1,3)      (1,1,1,1,1)  (1,5)
                       (2,2)                   (2,4)
                       (3,1)                   (3,3)
                       (1,1,1,1)               (4,2)
                                               (5,1)
                                               (1,1,4)
                                               (1,2,3)
                                               (1,3,2)
                                               (1,4,1)
                                               (2,1,3)
                                               (2,2,2)
                                               (2,3,1)
                                               (3,1,2)
                                               (3,2,1)
                                               (4,1,1)
                                               (1,1,1,1,1,1)
(End)
		

Crossrefs

Cf. A056045.
The version for nonempty subsets is A051293, geometric A326027.
The version for partitions is A067538, ranked by A316413, strict A102627.
These compositions are ranked by A096199.
The version for factorizations is A326622, geometric A326028.
A011782 counts compositions.
A067539 = partitions w integer geo mean, ranked by A326623, strict A326625.
A100346 counts compositions into divisors, partitions A018818.

Programs

  • Maple
    a:= n-> add(binomial(n-1, d-1), d=numtheory[divisors](n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Dec 03 2023
  • Mathematica
    Table[Length[Join @@ Permutations/@Select[IntegerPartitions[n],IntegerQ[Mean[#]]&]],{n,15}] (* Gus Wiseman, Sep 28 2022 *)
  • PARI
    a(n)=sumdiv(n,k,binomial(n-1,k-1))

A331023 Numerator: factorizations divided by strict factorizations A001055(n)/A045778(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 5, 1, 4, 1, 4, 1, 1, 1, 7, 2, 1, 3, 4, 1, 1, 1, 7, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 1, 4, 4, 1, 1, 12, 2, 4, 1, 4, 1, 7, 1, 7, 1, 1, 1, 11, 1, 1, 4, 11, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 4, 4, 1, 1, 1, 12, 5, 1, 1, 11, 1, 1, 1, 7, 1, 11, 1, 4, 1, 1, 1, 19, 1, 4, 4, 9, 1, 1, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2020

Keywords

Comments

A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different. Factorizations and strict factorizations are counted by A001055 and A045778 respectively.

Crossrefs

Positions of 1's are A005117.
Positions of 2's appear to be A001248.
The denominators are A331024.
The rounded quotients are A331048.
The same for integer partitions is A330994.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[n]]/Length[Select[facs[n],UnsameQ@@#&]],{n,100}]//Numerator
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(dA045778(n/d, d-1))));
    A331023(n) = numerator(A001055(n)/A045778(n)); \\ Antti Karttunen, May 27 2021

Formula

a(2^n) = A330994(n).

Extensions

More terms from Antti Karttunen, May 27 2021

A331024 Denominator: factorizations divided by strict factorizations A001055(n)/A045778(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 7, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 9, 1, 1, 3, 4, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 1, 1, 1, 7, 2, 1, 1, 9, 1, 1, 1, 5, 1, 9, 1, 3, 1, 1, 1, 10, 1, 3, 3, 5, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2020

Keywords

Comments

A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different. Factorizations and strict factorizations are counted by A001055 and A045778 respectively.

Crossrefs

Positions of 1's include all elements of A001248 as well as A005117. The first position of a 1 that is not in A167207 is 128.
The numerators are A331023.
The rounded quotients are A331048.
The same for integer partitions is A330995.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[n]]/Length[Select[facs[n],UnsameQ@@#&]],{n,100}]//Denominator
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(dA045778(n/d, d-1))));
    A331024(n) = denominator(A001055(n)/A045778(n)); \\ Antti Karttunen, May 27 2021

Formula

a(2^n) = A330995(n).

Extensions

More terms from Antti Karttunen, May 27 2021

A326644 Number of subsets of {1..n} containing n whose mean and geometric mean are both integers.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 3, 1, 7, 1, 1, 1, 1, 1, 6, 5, 1, 23, 1, 1, 1, 1, 28, 1, 1, 1, 38, 1, 1, 1, 5, 1, 1, 1, 1, 6, 1, 1, 81, 8, 28, 1, 1, 1, 126, 1, 6, 1, 1, 1, 37, 1, 1, 6, 208, 1, 1, 1, 1, 1, 1, 1, 351, 1, 1, 381, 1, 1, 1, 1, 159, 605, 1, 1, 9, 1, 1, 1, 2, 1, 1223, 1, 1, 1, 1, 1, 805, 1, 113, 2, 5021, 1, 1, 1, 2, 1, 1, 1, 2630, 1, 1, 1, 54, 1, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Examples

			The a(1) = 1 through a(12) = 3 subsets:
  {1}  {2}  {3}  {4}  {5}  {6}  {7}  {8}    {9}    {10}  {11}  {12}
                                     {2,8}  {1,9}              {3,6,12}
                                                               {3,4,9,12}
The a(18) = 7 subsets:
  {18}
  {2,18}
  {8,18}
  {1,8,9,18}
  {2,3,8,9,18}
  {6,12,16,18}
  {2,3,4,9,12,18}
		

Crossrefs

First differences of A326643.
Subsets whose mean is an integer are A051293.
Subsets whose geometric mean is an integer are A326027.
Partitions with integer mean and geometric mean are A326641.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,10}]

Extensions

More terms from David Wasserman, Aug 03 2019

A326667 Number of factorizations of 2^n into factors > 1 with integer average.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 15, 19, 21, 29, 37, 44, 58, 67, 86, 105, 136, 146, 219, 236, 295, 327, 473, 469, 694, 707, 932, 1020, 1398, 1340, 2023, 2059, 2636, 2816, 3887, 3855, 5377, 5467, 7095, 7611, 9924, 9992, 13795, 14205, 17728, 19315, 24803, 25452, 33026
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Comments

Also the number of integer partitions y of n such that the average of the multiset {2^s: s in y} is an integer.

Examples

			The a(1) = 1 through a(8) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (311)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (2211)    (511)      (422)
                                     (111111)  (3211)     (2222)
                                               (1111111)  (3311)
                                                          (4211)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The strict case is A326668.
Factorizations with integer average are A326622.
Partitions with integer average are A067538.
Subsets with integer average are A051293.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Mean[2^#]]&]],{n,30}]

A326666 Numbers k such that there exists a factorization of k into factors > 1 whose mean is not an integer but whose geometric mean is an integer.

Original entry on oeis.org

36, 64, 100, 144, 196, 216, 256, 324, 400, 484, 512, 576, 676, 784, 900, 1000, 1024, 1156, 1296, 1444, 1600, 1728, 1764, 1936, 2116, 2304, 2500, 2704, 2744, 2916, 3136, 3364, 3375, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 5832, 6084, 6400, 6724
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Examples

			36 has two such factorizations: (3*12) and (4*9).
The sequence of terms together with their prime indices begins:
    36: {1,1,2,2}
    64: {1,1,1,1,1,1}
   100: {1,1,3,3}
   144: {1,1,1,1,2,2}
   196: {1,1,4,4}
   216: {1,1,1,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   324: {1,1,2,2,2,2}
   400: {1,1,1,1,3,3}
   484: {1,1,5,5}
   512: {1,1,1,1,1,1,1,1,1}
   576: {1,1,1,1,1,1,2,2}
   676: {1,1,6,6}
   784: {1,1,1,1,4,4}
   900: {1,1,2,2,3,3}
  1000: {1,1,1,3,3,3}
  1024: {1,1,1,1,1,1,1,1,1,1}
  1156: {1,1,7,7}
  1296: {1,1,1,1,2,2,2,2}
  1444: {1,1,8,8}
		

Crossrefs

A subsequence of A001597.
Factorizations with integer mean are A326622.
Factorizations with integer geometric mean are A326028.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Length[Select[facs[#],!IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]]>1&]

A326668 Number of strict factorizations of 2^n into factors > 1 with integer average.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 6, 5, 7, 7, 9, 9, 12, 12, 17, 17, 21, 24, 33, 33, 42, 46, 63, 61, 81, 82, 118, 106, 149, 137, 213, 172, 263, 221, 363, 266, 453, 335, 594, 409, 735, 484, 968, 594, 1139, 731, 1486, 813, 1801, 1026, 2177, 1230, 2667, 1348, 3334, 1693
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Comments

Also the number of strict integer partitions y of n such that the average of the set {2^s: s in y} is an integer.

Examples

			The a(1) = 1 through a(11) = 7 partitions (A = 10, B = 11):
  (1)  (2)  (3)   (4)   (5)   (6)   (7)   (8)   (9)    (A)   (B)
            (21)  (31)  (32)  (42)  (43)  (53)  (54)   (64)  (65)
                        (41)  (51)  (52)  (62)  (63)   (73)  (74)
                                    (61)  (71)  (72)   (82)  (83)
                                                (81)   (91)  (92)
                                                (531)        (A1)
                                                             (731)
		

Crossrefs

The non-strict case is A326667.
Factorizations with integer average are A326622.
Strict partitions with integer average are A102627.
Subsets with integer average are A051293.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Mean[2^#]]&]],{n,30}]

A326671 Number of factorizations of 2^n into factors > 1 with even integer average.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 7, 8, 11, 14, 14, 20, 27, 31, 41, 47, 57, 75, 95, 102, 155, 170, 195, 239, 327, 331, 483, 517, 617, 740, 952, 942, 1406, 1484, 1742, 2023, 2652, 2688, 3680, 3892, 4729, 5375, 6689, 6911, 9437, 9938, 11754, 13529, 16710, 17419, 22346, 24230
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Comments

Also the number of integer partitions y of n such that the average of the multiset {2^(s - 1): s in y} is an integer.

Examples

			The a(1) = 1 through a(8) = 8 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (1111)  (311)    (42)      (52)       (53)
                            (11111)  (222)     (331)      (62)
                                     (111111)  (511)      (422)
                                               (3211)     (2222)
                                               (1111111)  (4211)
                                                          (11111111)
		

Crossrefs

The strict case is A326670.
Factorizations with integer average are A326622.
Partitions with integer average are A067538.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Mean[2^(#-1)]]&]],{n,30}]

A357710 Number of integer compositions of n with integer geometric mean.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 8, 4, 15, 17, 22, 48, 40, 130, 88, 287, 323, 543, 1084, 1145, 2938, 3141, 6928, 9770, 15585, 29249, 37540, 78464, 103289, 194265, 299752, 475086, 846933, 1216749, 2261920, 3320935, 5795349, 9292376, 14825858, 25570823, 39030115, 68265801, 106030947, 178696496
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2022

Keywords

Examples

			The a(6) = 4 through a(9) = 15 compositions:
  (6)       (7)        (8)         (9)
  (33)      (124)      (44)        (333)
  (222)     (142)      (2222)      (1224)
  (111111)  (214)      (11111111)  (1242)
            (241)                  (1422)
            (412)                  (2124)
            (421)                  (2142)
            (1111111)              (2214)
                                   (2241)
                                   (2412)
                                   (2421)
                                   (4122)
                                   (4212)
                                   (4221)
                                   (111111111)
		

Crossrefs

The unordered version (partitions) is A067539, ranked by A326623.
Compositions with integer average are A271654, partitions A067538.
Subsets whose geometric mean is an integer are A326027.
The version for factorizations is A326028.
The strict case is A339452, partitions A326625.
These compositions are ranked by A357490.
A011782 counts compositions.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],IntegerQ[GeometricMean[#]]&]],{n,0,15}]
  • Python
    from math import prod, factorial
    from sympy import integer_nthroot
    from sympy.utilities.iterables import partitions
    def A357710(n): return sum(factorial(s)//prod(factorial(d) for d in p.values()) for s,p in partitions(n,size=True) if integer_nthroot(prod(a**b for a, b in p.items()),s)[1]) if n else 0 # Chai Wah Wu, Sep 24 2023

Extensions

More terms from David A. Corneth, Oct 17 2022

A326670 Number of strict integer partitions y of n such that the average of the set {2^(s - 1): s in y} is an integer.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 5, 4, 6, 6, 8, 7, 10, 9, 13, 12, 15, 16, 23, 22, 27, 31, 41, 41, 50, 57, 74, 75, 90, 99, 133, 127, 158, 167, 226, 203, 278, 262, 371, 325, 457, 387, 622, 484, 715, 606, 969, 672, 1178, 866, 1428, 1050, 1776, 1142, 2276, 1459, 2514, 1792
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Examples

			The a(1) = 1 through a(12) = 6 partitions (A = 10, B = 11, C = 12):
  (1)  (2)  (3)  (4)  (5)   (6)   (7)   (8)   (9)    (A)   (B)    (C)
                      (32)  (42)  (43)  (53)  (54)   (64)  (65)   (75)
                                  (52)  (62)  (63)   (73)  (74)   (84)
                                              (72)   (82)  (83)   (93)
                                              (531)        (92)   (A2)
                                                           (731)  (642)
		

Crossrefs

The non-strict case is A326671.
Strict factorizations with integer average are A326668.
Strict partitions with integer average are A102627.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Mean[2^(#-1)]]&]],{n,30}]
Previous Showing 11-20 of 25 results. Next