cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A326246 Number of crossing, capturing set partitions of {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 37, 307, 2173, 14344, 92402, 596688
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

A set partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y, and capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The a(5) = 3 set partitions:
  {{1,3,4},{2,5}}
  {{1,3,5},{2,4}}
  {{1,4},{2,3,5}}
		

Crossrefs

MM-numbers of crossing, capturing multiset partitions are A326259.
Crossing set partitions are A016098.
Capturing set partitions are A326243.
Crossing, nesting set partitions are A326248.
Crossing, non-capturing set partitions are A326245.
Non-crossing, capturing set partitions are A122880 (conjecture).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A326259 MM-numbers of crossing, capturing multiset partitions (with empty parts allowed).

Original entry on oeis.org

8903, 15167, 16717, 17806, 18647, 20329, 20453, 21797, 22489, 25607, 26709, 27649, 29551, 30334, 31373, 32741, 33434, 34691, 35177, 35612, 35821, 37091, 37133, 37294, 37969, 38243, 39493, 40658, 40906, 41449, 42011, 42949, 43594, 43817, 43873, 44515, 44861
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y. It is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and y > t or x > z and y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   8903: {{1,3},{2,2,4}}
  15167: {{1,3},{2,2,5}}
  16717: {{2,4},{1,3,3}}
  17806: {{},{1,3},{2,2,4}}
  18647: {{1,3},{2,2,6}}
  20329: {{1,3},{1,2,2,4}}
  20453: {{1,2,3},{1,2,4}}
  21797: {{1,1,3},{2,2,4}}
  22489: {{1,4},{2,2,5}}
  25607: {{1,3},{2,2,7}}
  26709: {{1},{1,3},{2,2,4}}
  27649: {{1,4},{2,2,6}}
  29551: {{1,3},{2,2,8}}
  30334: {{},{1,3},{2,2,5}}
  31373: {{2,5},{1,3,3}}
  32741: {{1,3},{2,2,2,4}}
  33434: {{},{2,4},{1,3,3}}
  34691: {{1,2,3},{2,2,4}}
  35177: {{1,3},{1,2,2,5}}
  35612: {{},{},{1,3},{2,2,4}}
		

Crossrefs

Crossing set partitions are A000108.
Capturing set partitions are A326243.
Crossing, capturing set partitions are A326246.
MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of capturing multiset partitions are A326255.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    Select[Range[100000],capXQ[primeMS/@primeMS[#]]&&croXQ[primeMS/@primeMS[#]]&]

A326279 Number of labeled n-vertex simple graphs containing either a crossing or a nesting pair of edges.

Original entry on oeis.org

0, 0, 0, 0, 28, 864, 32064, 2094064
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(4) = 28 edge-sets:
  {13,24}  {12,13,24}  {12,13,14,23}  {12,13,14,23,24}  {12,13,14,23,24,34}
  {14,23}  {12,14,23}  {12,13,14,24}  {12,13,14,23,34}
           {13,14,23}  {12,13,23,24}  {12,13,14,24,34}
           {13,14,24}  {12,13,24,34}  {12,13,23,24,34}
           {13,23,24}  {12,14,23,24}  {12,14,23,24,34}
           {13,24,34}  {12,14,23,34}  {13,14,23,24,34}
           {14,23,24}  {13,14,23,24}
           {14,23,34}  {13,14,23,34}
                       {13,14,24,34}
                       {13,23,24,34}
                       {14,23,24,34}
		

Crossrefs

Crossing and nesting simple graphs are (both) A326210, while non-crossing, non-nesting simple graphs are A326244.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

A006125(n) = a(n) + A326244(n).

A326332 Number of integer partitions of n with unsortable prime factors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 5, 9, 14, 22, 33, 50, 71, 100, 140, 196, 265, 360, 480, 641, 842, 1104, 1432, 1855, 2378, 3040, 3858, 4888, 6146, 7708, 9616, 11969, 14818, 18305, 22511, 27629, 33773, 41191, 50069, 60744, 73453, 88645, 106681
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

An integer partition has unsortable prime factors if there is no permutation (c_1,...,c_k) of the parts such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the partition (27,8,6) is sortable because the permutation (8,6,27) satisfies the condition.

Examples

			The a(12) = 1 through a(17) = 14 partitions:
  (6,6)  (10,3)   (6,6,2)    (6,6,3)      (10,6)         (14,3)
         (6,6,1)  (10,3,1)   (10,3,2)     (6,6,4)        (6,6,5)
                  (6,6,1,1)  (6,6,2,1)    (10,3,3)       (10,4,3)
                             (10,3,1,1)   (6,6,2,2)      (10,6,1)
                             (6,6,1,1,1)  (6,6,3,1)      (6,6,3,2)
                                          (10,3,2,1)     (6,6,4,1)
                                          (6,6,2,1,1)    (10,3,2,2)
                                          (10,3,1,1,1)   (10,3,3,1)
                                          (6,6,1,1,1,1)  (6,6,2,2,1)
                                                         (6,6,3,1,1)
                                                         (10,3,2,1,1)
                                                         (6,6,2,1,1,1)
                                                         (10,3,1,1,1,1)
                                                         (6,6,1,1,1,1,1)
		

Crossrefs

Sortable integer partitions are A326333.
Unsortable set partitions are A058681.
Unsortable normal multiset partitions are A326211.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,0,20}]

Formula

A000041(n) = a(n) + A326333(n).

A326291 Number of unsortable factorizations of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2019

Keywords

Comments

A factorization into factors > 1 is unsortable if there is no permutation (c_1,...,c_k) of the factors such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the factorization (6*8*27) is sortable because the permutation (8,6,27) satisfies the condition.

Examples

			The a(180) = 10 unsortable factorizations:
  (2*3*3*10)  (5*6*6)   (3*60)
              (2*3*30)  (6*30)
              (2*9*10)  (9*20)
              (3*3*20)  (10*18)
              (3*6*10)
Missing from this list are:
  (2*2*3*3*5)  (2*2*5*9)   (4*5*9)   (2*90)   (180)
               (2*3*5*6)   (2*2*45)  (4*45)
               (3*3*4*5)   (2*5*18)  (5*36)
               (2*2*3*15)  (2*6*15)  (12*15)
                           (3*4*15)
                           (3*5*12)
		

Crossrefs

Unsortable set partitions are A058681.
Unsortable normal multiset partitions are A326211.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[facs[n],!OrderedQ[Join@@Sort[primeMS/@#,lexsort]]&]],{n,100}]

A326333 Number of integer partitions of n with sortable prime factors.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 99, 132, 171, 222, 283, 363, 457, 577, 721, 902, 1115, 1379, 1693, 2076, 2530, 3077, 3723, 4500, 5410, 6494, 7765, 9270, 11025, 13089, 15491, 18307, 21569, 25369, 29765, 34869, 40750, 47546, 55361, 64367, 74685, 86529
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

An integer partition has sortable prime factors if there is a permutation (c_1,...,c_k) of the parts such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the partition (27,8,6) is sortable because the permutation (8,6,27) satisfies the condition.

Crossrefs

Unsortable integer partitions are A326332.
Sortable normal multiset partitions are A326212.
Sortable factorizations are A326334.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,0,20}]

Formula

A000041(n) = a(n) + A326332(n).

A326334 Number of sortable factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 4, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 4, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 8, 1, 2, 4, 11, 2, 4, 1, 4, 2, 4, 1, 14, 1, 2, 4, 4, 2, 4, 1, 12, 5, 2, 1, 8, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

A factorization into factors > 1 is sortable if there is a permutation (c_1,...,c_k) of the factors such that the maximum prime factor (in the standard factorization of an integer into prime numbers) of c_i is at most the minimum prime factor of c_{i+1}. For example, the factorization (6*8*27) is sortable because the permutation (8,6,27) satisfies the condition.

Examples

			The a(180) = 16 sortable factorizations:
  (2*2*3*3*5)  (2*2*5*9)   (4*5*9)   (2*90)   (180)
               (2*3*5*6)   (2*2*45)  (4*45)
               (3*3*4*5)   (2*5*18)  (5*36)
               (2*2*3*15)  (2*6*15)  (12*15)
                           (3*4*15)
                           (3*5*12)
Missing from this list are the following unsortable factorizations:
  (2*3*3*10)  (5*6*6)   (3*60)
              (2*3*30)  (6*30)
              (2*9*10)  (9*20)
              (3*3*20)  (10*18)
              (3*6*10)
		

Crossrefs

Factorizations are A001055.
Unsortable factorizations are A326291.
Sortable integer partitions are A326333.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,100}]

Formula

A001055(n) = a(n) + A326291(n).

A326277 Number of crossing normal multiset partitions of weight n.

Original entry on oeis.org

0, 0, 0, 0, 1, 22, 314, 3711, 39947
Offset: 0

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.
A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y.

Examples

			The a(5) = 22 crossing normal multiset partitions:
  {{1,3},{1,2,4}}  {{1},{1,3},{2,4}}
  {{1,3},{2,2,4}}  {{1},{2,4},{3,5}}
  {{1,3},{2,3,4}}  {{2},{1,3},{2,4}}
  {{1,3},{2,4,4}}  {{2},{1,4},{3,5}}
  {{1,3},{2,4,5}}  {{3},{1,3},{2,4}}
  {{1,4},{2,3,5}}  {{3},{1,4},{2,5}}
  {{2,4},{1,1,3}}  {{4},{1,3},{2,4}}
  {{2,4},{1,2,3}}  {{4},{1,3},{2,5}}
  {{2,4},{1,3,3}}  {{5},{1,3},{2,4}}
  {{2,4},{1,3,4}}
  {{2,4},{1,3,5}}
  {{2,5},{1,3,4}}
  {{3,5},{1,2,4}}
		

Crossrefs

Crossing simple graphs are A326210.
Normal multiset partitions are A255906.
Non-crossing normal multiset partitions are A324171.
MM-numbers of crossing multiset partitions are A324170.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
Previous Showing 11-18 of 18 results.