cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A326566 Number of covering antichains of subsets of {1..n} with equal edge-sums.

Original entry on oeis.org

2, 1, 1, 2, 4, 14, 92, 1320, 73584, 51913039
Offset: 0

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(1) = 1 through a(5) = 14 antichains:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}      {{1,2,3,4,5}}
                  {{3},{1,2}}  {{1,4},{2,3}}    {{1,2,5},{1,3,4}}
                               {{2,4},{1,2,3}}  {{1,3,5},{2,3,4}}
                               {{3,4},{1,2,4}}  {{1,4,5},{2,3,5}}
                                                {{5},{1,4},{2,3}}
                                                {{1,4,5},{1,2,3,4}}
                                                {{2,3,5},{1,2,3,4}}
                                                {{2,4,5},{1,2,3,5}}
                                                {{3,4,5},{1,2,4,5}}
                                                {{1,5},{2,4},{1,2,3}}
                                                {{2,5},{3,4},{1,2,4}}
                                                {{3,5},{1,2,5},{1,3,4}}
                                                {{4,5},{1,3,5},{2,3,4}}
                                                {{1,4,5},{2,3,5},{1,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 14 2019

A326574 Number of antichains of subsets of {1..n} with equal edge-sums.

Original entry on oeis.org

2, 3, 5, 10, 22, 61, 247, 2096, 81896, 52260575
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(0) = 2 through a(4) = 22 antichains:
  {}    {}     {}       {}           {}
  {{}}  {{}}   {{}}     {{}}         {{}}
        {{1}}  {{1}}    {{1}}        {{1}}
               {{2}}    {{2}}        {{2}}
               {{1,2}}  {{3}}        {{3}}
                        {{1,2}}      {{4}}
                        {{1,3}}      {{1,2}}
                        {{2,3}}      {{1,3}}
                        {{1,2,3}}    {{1,4}}
                        {{3},{1,2}}  {{2,3}}
                                     {{2,4}}
                                     {{3,4}}
                                     {{1,2,3}}
                                     {{1,2,4}}
                                     {{1,3,4}}
                                     {{2,3,4}}
                                     {{1,2,3,4}}
                                     {{3},{1,2}}
                                     {{4},{1,3}}
                                     {{1,4},{2,3}}
                                     {{2,4},{1,2,3}}
                                     {{3,4},{1,2,4}}
		

Crossrefs

Set partitions with equal block-sums are A035470.
Antichains with different edge-sums are A326030.
MM-numbers of multiset partitions with equal part-sums are A326534.
The covering case is A326566.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleqset[set_]:=stableSets[Subsets[set],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&];
    Table[Length[cleqset[Range[n]]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 13 2019

A371733 Maximal length of a factorization of n into factors > 1 all having the same sum of prime indices.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Sum of prime indices is given by A056239.
Factorizations into factors all having the same sum of prime indices are counted by A321455.

Examples

			The factorizations of 588 of this type are (7*7*12), (21*28), (588), so a(588) = 3.
The factorizations of 900 of this type are (5*5*6*6), (9*10*10), (25*36), (30*30), (900), so a(900) = 4.
		

Crossrefs

Positions of 1's are A321453, counted by A321451.
Positions of terms > 1 are A321454, counted by A321452.
Factorizations of this type are counted by A321455, different sums A321469.
For different sums instead of same sums we have A371734.
For set partitions of binary indices we have A371735.
A001055 counts factorizations.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A321142 and A371794 count non-biquanimous strict partitions.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Table[Max[Length/@Select[facs[n],SameQ@@hwt/@#&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_same_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == 1));
    A371733(n, m=n, facs=List([])) = if(1==n, if(all_have_same_sum_of_pis(facs),#facs,0), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s = max(s, A371733(n/d, d, newfacs)))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A382215 MM-numbers of multiset partitions into constant blocks with a common sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 35, 41, 49, 53, 59, 64, 67, 81, 83, 97, 103, 109, 121, 125, 127, 128, 131, 157, 175, 179, 191, 209, 211, 227, 241, 243, 245, 256, 277, 283, 289, 311, 331, 343, 353, 361, 367, 391, 401, 419, 431, 461
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with their prime indices of prime indices begin:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  31: {{5}}
  32: {{},{},{},{},{}}
  35: {{2},{1,1}}
  41: {{6}}
  49: {{1,1},{1,1}}
  53: {{1,1,1,1}}
  59: {{7}}
		

Crossrefs

Twice-partitions of this type are counted by A279789.
For just constant blocks we have A302492, counted by A000688.
For sets of constant multisets we have A302496, counted by A050361.
For just common sums we have A326534, counted by A321455.
Factorizations of this type are counted by A381995.
For strict blocks and distinct sums we have A382201, counted by A381633.
Normal multiset partitions of this type are counted by A382204.
For strict instead of constant blocks we have A382304, counted by A382080.
For sets of constant multisets with distinct sums A382426, counted by A381635.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@prix/@prix[#] && And@@SameQ@@@prix/@prix[#]&]
  • PARI
    is(k) = my(f=factor(k)[, 1]~, k, p, v=vector(#f, i, primepi(f[i]))); for(i=1, #v, k=isprimepower(v[i], &p); if(k||v[i]==1, v[i]=k*primepi(p), return(0))); #Set(v)<2; \\ Jinyuan Wang, Apr 02 2025

Formula

Equals A326534 /\ A302492.

A358835 Number of multiset partitions of integer partitions of n with constant block sizes and constant block sums.

Original entry on oeis.org

1, 1, 3, 4, 8, 8, 17, 16, 31, 34, 54, 57, 108, 102, 166, 191, 294, 298, 504, 491, 803, 843, 1251, 1256, 2167, 1974, 3133, 3226, 4972, 4566, 8018, 6843, 11657, 11044, 17217, 15010, 28422, 21638, 38397, 35067, 58508, 44584, 91870, 63262, 125114, 106264, 177483
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2022

Keywords

Examples

			The a(1) = 1 through a(6) = 17 multiset partitions:
  {1}  {2}     {3}        {4}           {5}              {6}
       {11}    {12}       {13}          {14}             {15}
       {1}{1}  {111}      {22}          {23}             {24}
               {1}{1}{1}  {112}         {113}            {33}
                          {1111}        {122}            {114}
                          {2}{2}        {1112}           {123}
                          {11}{11}      {11111}          {222}
                          {1}{1}{1}{1}  {1}{1}{1}{1}{1}  {1113}
                                                         {1122}
                                                         {3}{3}
                                                         {11112}
                                                         {111111}
                                                         {12}{12}
                                                         {2}{2}{2}
                                                         {111}{111}
                                                         {11}{11}{11}
                                                         {1}{1}{1}{1}{1}{1}
		

Crossrefs

For just constant sums we have A305551, ranked by A326534.
For just constant lengths we have A319066, ranked by A320324.
The version for set partitions is A327899.
For distinct instead of constant lengths and sums we have A358832.
The version for twice-partitions is A358833.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions, strict A296122.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Union[Sort/@Join@@Table[Select[Tuples[IntegerPartitions[d],n/d],SameQ@@Length/@#&],{d,Divisors[n]}]]]],{n,0,20}]
  • PARI
    P(n,y) = 1/prod(k=1, n, 1 - y*x^k + O(x*x^n))
    seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, binomial(d + polcoef(p, j, y) - 1, d)))))} \\ Andrew Howroyd, Dec 31 2022

Formula

a(n) = Sum_{d|n} Sum_{j=1..n/d} binomial(d + A008284(n/d, j) - 1, d) for n > 0. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(41) and beyond from Andrew Howroyd, Dec 31 2022

A371734 Maximal length of a factorization of n into factors > 1 all having different sums of prime indices.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Sum of prime indices is given by A056239.
Factorizations into factors > 1 all having different sums of prime indices are counted by A321469.

Examples

			The factorizations of 90 of this type are (2*3*15), (2*5*9), (2*45), (3*30), (5*18), (6*15), (90), so a(90) = 3.
		

Crossrefs

For set partitions of binary indices we have A000120, same sums A371735.
Positions of 1's are A000430.
Positions of terms > 1 are A080257.
Factorizations of this type are counted by A321469, same sums A321455.
For same instead of different sums we have A371733.
A001055 counts factorizations.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Table[Max[Length/@Select[facs[n],UnsameQ@@hwt/@#&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_different_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == #facs));
    A371734(n, m=n, facs=List([])) = if(1==n, if(all_have_different_sum_of_pis(facs),#facs,0), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s = max(s,A371734(n/d, d, newfacs)))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A371735 Maximal length of a set partition of the binary indices of n into blocks all having the same sum.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
If a(n) = k then the binary indices of n (row n of A048793) are k-quanimous (counted by A371783).

Examples

			The binary indices of 119 are {1,2,3,5,6,7}, and the set partitions into blocks with the same sum are:
  {{1,7},{2,6},{3,5}}
  {{1,5,6},{2,3,7}}
  {{1,2,3,6},{5,7}}
  {{1,2,3,5,6,7}}
So a(119) = 3.
		

Crossrefs

Set partitions of this type are counted by A035470, A336137.
A version for factorizations is A371733.
Positions of 1's are A371738.
Positions of terms > 1 are A371784.
A001055 counts factorizations.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A321452 counts quanimous partitions, ranks A321454.
A326031 gives weight of the set-system with BII-number n.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Max[Length/@Select[sps[bix[n]],SameQ@@Total/@#&]],{n,0,100}]

A371955 Numbers with triquanimous prime indices.

Original entry on oeis.org

8, 27, 36, 48, 64, 125, 150, 180, 200, 216, 240, 288, 320, 343, 384, 441, 490, 512, 567, 588, 630, 700, 729, 756, 784, 810, 840, 900, 972, 1000, 1008, 1080, 1120, 1200, 1296, 1331, 1344, 1440, 1600, 1694, 1728, 1792, 1815, 1920, 2156, 2178, 2197, 2304, 2310
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2024

Keywords

Comments

A finite multiset of numbers is defined to be triquanimous iff it can be partitioned into three multisets with equal sums.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     8: {1,1,1}
    27: {2,2,2}
    36: {1,1,2,2}
    48: {1,1,1,1,2}
    64: {1,1,1,1,1,1}
   125: {3,3,3}
   150: {1,2,3,3}
   180: {1,1,2,2,3}
   200: {1,1,1,3,3}
   216: {1,1,1,2,2,2}
   240: {1,1,1,1,2,3}
   288: {1,1,1,1,1,2,2}
   320: {1,1,1,1,1,1,3}
   343: {4,4,4}
   384: {1,1,1,1,1,1,1,2}
   441: {2,2,4,4}
   490: {1,3,4,4}
   512: {1,1,1,1,1,1,1,1,1}
   567: {2,2,2,2,4}
   588: {1,1,2,4,4}
		

Crossrefs

These are the Heinz numbers of the partitions counted by A002220.
For biquanimous we have A357976, counted by A002219.
For non-biquanimous we have A371731, counted by A371795, even case A006827.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A237258 (aerated) counts biquanimous strict partitions, ranks A357854.
A371783 counts k-quanimous partitions.

Programs

  • Maple
    tripart:= proc(L) local t,X,Y,n,cons,i,R;
      t:= convert(L,`+`)/3;
      n:= nops(L);
      if not t::integer then return false fi;
      cons:= [add(L[i]*X[i],i=1..n)=t,
              add(L[i]*Y[i],i=1..n)=t,
              seq(X[i] + Y[i] <= 1, i=1..n)];
      R:= traperror(Optimization:-Maximize(0, cons, assume=binary));
      R::list
    end proc:
    primeindices:= proc(n) local F,t;
      F:= ifactors(n)[2];
      map(t -> numtheory:-pi(t[1])$t[2], F)
    end proc:
    select(tripart @ primindices, [$2..3000]); # Robert Israel, May 19 2025
  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#], Length[#]==3&&SameQ@@hwt/@#&]!={}&]

A383093 Number of integer partitions of n that can be partitioned into constant blocks with a common sum.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 7, 2, 9, 5, 9, 2, 23, 2, 11, 10, 24, 2, 33, 2, 36, 12, 15, 2, 87, 7, 17, 17, 53, 2, 96, 2, 79, 16, 21, 14, 196, 2, 23, 18, 154, 2, 166, 2, 99, 54, 27, 2, 431, 9, 85, 22, 128, 2, 303, 18, 261, 24, 33, 2, 771, 2, 35, 73, 331, 20, 422, 2, 198, 28, 216, 2, 1369
Offset: 0

Views

Author

Gus Wiseman, Apr 22 2025

Keywords

Examples

			The partition (4,4,2,2,2,2,1,1,1,1,1,1,1,1) has two partitions into constant blocks with a common sum: {{4,4},{2,2,2,2},{1,1,1,1,1,1,1,1}} and {{4},{4},{2,2},{2,2},{1,1,1,1},{1,1,1,1}}, so is counted under a(24).
The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                    (211)            (222)                (422)
                    (1111)           (2211)               (2222)
                                     (3111)               (22211)
                                     (21111)              (41111)
                                     (111111)             (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

Twice-partitions of this type (constant with common) are counted by A279789.
Multiset partitions of this type are ranked by A383309.
The complement is counted by A381993, ranks A381871.
For sets we have the complement of A381994, see A381719, A382080.
Normal multiset partitions of this type are counted by A382203, sets A381718.
For distinct instead of equal block-sums we have A382427.
These partitions are ranked by A383014, nonzeros of A381995.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers, see A381455, A381453.
A001055 counts factorizations, strict A045778, see A317141, A300383, A265947.
A050361 counts factorizations into distinct prime powers, see A381715.
A323774 counts partitions into constant blocks with a common sum
Constant blocks with distinct sums: A381635, A381636, A381717.
Permutation with equal run-sums: A383096, A383098, A383100, A383110

Programs

  • Mathematica
    mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
    Table[Length[Select[IntegerPartitions[n],Length[Select[Join@@@Tuples[mce/@Split[#]],SameQ@@Total/@#&]]>0&]],{n,0,30}]

Formula

Multiset systems of this type have MM-numbers A383309 = A326534 /\ A355743.
Conjecture: We have Sum_{d|n} a(d) = A323774(n), so this is the Moebius transform of A323774.

Extensions

More terms from Jakub Buczak, May 03 2025

A327901 Nonprime squarefree numbers whose prime indices all have the same sum of prime indices (A056239).

Original entry on oeis.org

1, 35, 143, 209, 247, 391, 493, 629, 667, 851, 901, 1073, 1219, 1333, 1457, 1537, 1891, 1961, 2021, 2201, 2623, 2717, 2759, 2867, 2993, 3053, 3239, 3337, 3827, 3977, 4061, 4183, 4223, 4331, 4387, 4633, 5429, 5633, 5767, 5959, 6157, 6191, 6319, 7081, 7093, 7519
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
    35: {3,4}
   143: {5,6}
   209: {5,8}
   247: {6,8}
   391: {7,9}
   493: {7,10}
   629: {7,12}
   667: {9,10}
   851: {9,12}
   901: {7,16}
  1073: {10,12}
  1219: {9,16}
  1333: {11,14}
  1457: {11,15}
  1537: {10,16}
  1891: {11,18}
  1961: {12,16}
  2021: {14,15}
  2201: {11,20}
		

Crossrefs

The version including primes and nonsquarefree numbers is A326534.
The version for number of prime indices is A327900.
The version for mean of prime indices is A327902.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],!PrimeQ[#]&&SquareFreeQ[#]&&SameQ@@Total/@primeMS/@primeMS[#]&];
Previous Showing 21-30 of 40 results. Next