A367908
Numbers n such that there is only one way to choose a different binary index of each binary index of n.
Original entry on oeis.org
1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 56, 67, 69, 70, 73, 74, 81, 88, 98, 104, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152, 154, 156, 162, 163, 165, 166, 168
Offset: 1
The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in exactly one way, namely (1,2,3), so 21 is in the sequence.
The terms together with the corresponding set-systems begin:
1: {{1}}
2: {{2}}
3: {{1},{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
17: {{1},{1,3}}
19: {{1},{2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
These set-systems are counted by
A367904.
The version for MM-numbers of multiset partitions is
A368101.
A059201 counts covering T_0 set-systems.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A368098 counts unlabeled multiset partitions for axiom, complement
A368097.
BII-numbers:
A309314 (hyperforests),
A326701 (set partitions),
A326703 (chains),
A326704 (antichains),
A326749 (connected),
A326750 (clutters),
A326751 (blobs),
A326752 (hypertrees),
A326754 (covers),
A326783 (uniform),
A326784 (regular),
A326788 (simple),
A330217 (achiral).
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]==1&]
-
from itertools import count, islice, product
def bin_i(n): #binary indices
return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
def a_gen(): #generator of terms
for n in count(1):
p = list(product(*[bin_i(k) for k in bin_i(n)]))
x,c = len(p),0
for j in range(x):
if len(set(p[j])) == len(p[j]): c += 1
if j+1 == x and c == 1: yield(n)
A367908_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Feb 10 2024
A326750
BII-numbers of clutters (connected antichains of nonempty sets).
Original entry on oeis.org
0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 52, 64, 128, 256, 260, 272, 276, 292, 304, 308, 320, 512, 516, 532, 544, 548, 560, 564, 576, 768, 772, 784, 788, 800, 804, 816, 820, 832, 1024, 1040, 1056, 1072, 1088, 2048, 2064, 2068, 2080, 2084, 2096, 2100, 2112, 2304
Offset: 1
The sequence of all clutters together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
8: {{3}}
16: {{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
128: {{4}}
256: {{1,4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}
292: {{1,2},{2,3},{1,4}}
304: {{1,3},{2,3},{1,4}}
308: {{1,2},{1,3},{2,3},{1,4}}
320: {{1,2,3},{1,4}}
The number of clutters spanning n vertices is
A048143(n).
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&]
-
# see linked program
A326703
BII-numbers of chains of nonempty sets.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 64, 65, 66, 68, 69, 70, 72, 80, 81, 88, 96, 98, 104, 128, 256, 257, 384, 512, 514, 640, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1408, 1536, 1538, 1664, 2048, 2056, 2176, 4096, 4097, 4104, 4112, 4113, 4120
Offset: 1
The sequence of all chains of nonempty sets together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
72: {{3},{1,2,3}}
80: {{1,3},{1,2,3}}
81: {{1},{1,3},{1,2,3}}
88: {{3},{1,3},{1,2,3}}
96: {{2,3},{1,2,3}}
98: {{2},{2,3},{1,2,3}}
Chains of nonempty sets are counted by
A000629.
MM-numbers of chains of multisets are
A318991.
BII-numbers of antichains of nonempty sets are
A326704.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[bpe/@bpe[#],!SubsetQ[#1,#2]&&!SubsetQ[#2,#1]&]&]
-
from itertools import chain, count, combinations, islice
from sympy.combinatorics.subsets import ksubsets
def subsets(x):
for i in range(1,len(x)):
for j in ksubsets(x,i):
yield(list(j))
def a_gen(): #generator of terms
yield 0
for n in count(1):
t,v,j = [[]],[],0
for i in chain.from_iterable(combinations(range(1, n+1), r) for r in range(n+1)):
if n in i:
t[j].append([list(i)])
while n:
t.append([])
for i in t[j]:
if len(i[-1]) > 1:
for k in list(subsets(i[-1])):
t[j+1].append(i.copy()+[k])
if len(t[j+1]) < 1:
break
j += 1
for j in chain.from_iterable(t):
v.append(sum(2**(sum(2**(m-1) for m in k)-1) for k in j))
yield from sorted(v)
A326703_list = list(islice(a_gen(), 55)) # John Tyler Rascoe, Jun 07 2024
A309326
BII-numbers of minimal covers.
Original entry on oeis.org
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 320, 512, 513, 516, 520, 521, 524, 528, 544, 545, 548
Offset: 1
The sequence of all minimal covers together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
64: {{1,2,3}}
128: {{4}}
129: {{1},{4}}
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,1000],And@@Table[Union@@Delete[bpe/@bpe[#],i]!=Union@@bpe/@bpe[#],{i,Length[bpe/@bpe[#]]}]&]
A326751
BII-numbers of blobs.
Original entry on oeis.org
0, 1, 2, 4, 8, 16, 32, 52, 64, 128, 256, 512, 772, 816, 820, 832, 1024, 1072, 1088, 2048, 2320, 2340, 2356, 2368, 2580, 2592, 2612, 2624, 2836, 2852, 2864, 2868, 2880, 3088, 3104, 3120, 3136, 4096, 4132, 4160, 4612, 4640, 4644, 4672, 5120, 5152, 5184, 8192
Offset: 1
The sequence of all blobs together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
8: {{3}}
16: {{1,3}}
32: {{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
128: {{4}}
256: {{1,4}}
512: {{2,4}}
772: {{1,2},{1,4},{2,4}}
816: {{1,3},{2,3},{1,4},{2,4}}
820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
832: {{1,2,3},{1,4},{2,4}}
1024: {{1,2,4}}
1072: {{1,3},{2,3},{1,2,4}}
1088: {{1,2,3},{1,2,4}}
2048: {{3,4}}
2320: {{1,3},{1,4},{3,4}}
2340: {{1,2},{2,3},{1,4},{3,4}}
2356: {{1,2},{1,3},{2,3},{1,4},{3,4}}
Cf.
A000120,
A002218,
A013922 (2-vertex-connected graphs),
A030019,
A048143 (clutters),
A048793,
A070939,
A095983,
A275307 (spanning blobs),
A304118,
A304887,
A322117,
A322397 (2-edge-connected clutters),
A326031.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
tvcQ[eds_]:=And@@Table[Length[csm[DeleteCases[eds,i,{2}]]]<=1,{i,Union@@eds}];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&&tvcQ[bpe/@bpe[#]]&]
A087086
Primitive sets of integers, each subset mapped onto a unique binary integer, values here shown in decimal.
Original entry on oeis.org
0, 1, 2, 4, 6, 8, 12, 16, 18, 20, 22, 24, 28, 32, 40, 48, 56, 64, 66, 68, 70, 72, 76, 80, 82, 84, 86, 88, 92, 96, 104, 112, 120, 128, 132, 144, 148, 160, 176, 192, 196, 208, 212, 224, 240, 256, 258, 264, 272, 274, 280, 288, 296, 304, 312, 320, 322, 328, 336, 338, 344
Offset: 0
Alan Sutcliffe (alansut(AT)ntlworld.com), Aug 14 2003
a(10)=22 since the 10th primitive set counting from 0 is {5,3,2}, which maps onto 10110 binary = 22 decimal.
From _Gus Wiseman_, Oct 31 2019: (Start)
The sequence of terms together with their binary expansions and binary indices begins:
0: 0 ~ {}
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
6: 110 ~ {2,3}
8: 1000 ~ {4}
12: 1100 ~ {3,4}
16: 10000 ~ {5}
18: 10010 ~ {2,5}
20: 10100 ~ {3,5}
22: 10110 ~ {2,3,5}
24: 11000 ~ {4,5}
28: 11100 ~ {3,4,5}
(End)
- Alan Sutcliffe, Divisors and Common Factors in Sets of Integers, awaiting publication
A051026 gives the number of primitive subsets of the integers 1 to n.
The version for prime indices (rather than binary indices) is
A316476.
The relatively prime case is
A328671.
Partitions with no consecutive divisible parts are
A328171.
Compositions without consecutive divisible parts are
A328460.
A ranking of antichains is
A326704.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[Join@@Position[Reverse[IntegerDigits[#,2]],1],Divisible]&] (* Gus Wiseman, Oct 31 2019 *)
A326752
BII-numbers of hypertrees.
Original entry on oeis.org
0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 64, 128, 256, 260, 272, 276, 292, 304, 320, 512, 516, 532, 544, 548, 560, 576, 768, 784, 800, 1024, 1040, 1056, 2048, 2064, 2068, 2080, 2084, 2096, 2112, 2304, 2308, 2336, 2560, 2564, 2576, 2816, 3072, 4096, 4100, 4128, 4608
Offset: 1
The sequence of all hypertrees together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
8: {{3}}
16: {{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
64: {{1,2,3}}
128: {{4}}
256: {{1,4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}
292: {{1,2},{2,3},{1,4}}
304: {{1,3},{2,3},{1,4}}
320: {{1,2,3},{1,4}}
Cf.
A000120,
A000272,
A030019 (spanning hypertrees),
A035053,
A048143,
A048793,
A052888,
A070939,
A134954,
A275307,
A326031,
A326702,
A326753.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
density[c_]:=Total[(Length[#1]-1&)/@c]-Length[Union@@c];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Select[Range[0,1000],#==0||stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&&density[bpe/@bpe[#]]==-1&]
A309314
BII-numbers of hyperforests.
Original entry on oeis.org
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 292, 304, 320, 512, 513, 516, 520, 521, 524, 528, 532
Offset: 1
The sequence of all hyperforests together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
64: {{1,2,3}}
128: {{4}}
129: {{1},{4}}
130: {{2},{4}}
131: {{1},{2},{4}}
132: {{1,2},{4}}
136: {{3},{4}}
137: {{1},{3},{4}}
Cf.
A000120,
A030019,
A035053,
A048143,
A048793,
A052888,
A070939,
A134954,
A275307,
A326031,
A326702,
A326753.
A326788
BII-numbers of simple labeled graphs.
Original entry on oeis.org
0, 4, 16, 20, 32, 36, 48, 52, 256, 260, 272, 276, 288, 292, 304, 308, 512, 516, 528, 532, 544, 548, 560, 564, 768, 772, 784, 788, 800, 804, 816, 820, 2048, 2052, 2064, 2068, 2080, 2084, 2096, 2100, 2304, 2308, 2320, 2324, 2336, 2340, 2352, 2356, 2560, 2564
Offset: 1
The sequence of all simple labeled graphs together with their BII-numbers begins:
0: {}
4: {{1,2}}
16: {{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
256: {{1,4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}
288: {{2,3},{1,4}}
292: {{1,2},{2,3},{1,4}}
304: {{1,3},{2,3},{1,4}}
308: {{1,2},{1,3},{2,3},{1,4}}
512: {{2,4}}
516: {{1,2},{2,4}}
528: {{1,3},{2,4}}
532: {{1,2},{1,3},{2,4}}
Cf.
A000120,
A006125,
A006129,
A018900,
A048793,
A062880,
A070939,
A309356 (same for MM-numbers),
A322551,
A326031,
A326702.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,100],SameQ[2,##]&@@Length/@bpe/@bpe[#]&]
A367909
Numbers n such that there is more than one way to choose a different binary index of each binary index of n.
Original entry on oeis.org
4, 12, 16, 18, 20, 32, 33, 36, 48, 52, 64, 65, 66, 68, 72, 76, 80, 82, 84, 96, 97, 100, 112, 132, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 193, 194, 196, 200, 204, 208, 210, 212, 224, 225, 228, 240, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288
Offset: 1
The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in only one way (1,2,3), so 21 is not in the sequence.
The terms together with the corresponding set-systems begin:
4: {{1,2}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
72: {{3},{1,2,3}}
These set-systems are counted by
A367772.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A368098 counts unlabeled multiset partitions per axiom, complement
A368097.
BII-numbers:
A309314 (hyperforests),
A326701 (set partitions),
A326703 (chains),
A326704 (antichains),
A326749 (connected),
A326750 (clutters),
A326751 (blobs),
A326752 (hypertrees),
A326754 (covers),
A326783 (uniform),
A326784 (regular),
A326788 (simple),
A330217 (achiral).
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]>1&]
Comments