A367909
Numbers n such that there is more than one way to choose a different binary index of each binary index of n.
Original entry on oeis.org
4, 12, 16, 18, 20, 32, 33, 36, 48, 52, 64, 65, 66, 68, 72, 76, 80, 82, 84, 96, 97, 100, 112, 132, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 193, 194, 196, 200, 204, 208, 210, 212, 224, 225, 228, 240, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288
Offset: 1
The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in only one way (1,2,3), so 21 is not in the sequence.
The terms together with the corresponding set-systems begin:
4: {{1,2}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
72: {{3},{1,2,3}}
These set-systems are counted by
A367772.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A368098 counts unlabeled multiset partitions per axiom, complement
A368097.
BII-numbers:
A309314 (hyperforests),
A326701 (set partitions),
A326703 (chains),
A326704 (antichains),
A326749 (connected),
A326750 (clutters),
A326751 (blobs),
A326752 (hypertrees),
A326754 (covers),
A326783 (uniform),
A326784 (regular),
A326788 (simple),
A330217 (achiral).
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]>1&]
A340020
MM-numbers of labeled graphs with loops, without isolated vertices.
Original entry on oeis.org
1, 7, 13, 23, 29, 43, 47, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 553, 559, 577, 607, 611, 631, 647, 653, 661, 667, 673, 677
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {} 161: {{1,1},{2,2}} 347: {{2,9}}
7: {{1,1}} 163: {{1,8}} 373: {{1,12}}
13: {{1,2}} 167: {{2,6}} 377: {{1,2},{1,3}}
23: {{2,2}} 199: {{1,9}} 389: {{4,5}}
29: {{1,3}} 203: {{1,1},{1,3}} 421: {{1,13}}
43: {{1,4}} 227: {{4,4}} 439: {{3,7}}
47: {{2,3}} 233: {{2,7}} 443: {{1,14}}
73: {{2,4}} 257: {{3,5}} 449: {{2,10}}
79: {{1,5}} 269: {{2,8}} 467: {{4,6}}
91: {{1,1},{1,2}} 271: {{1,10}} 487: {{2,11}}
97: {{3,3}} 293: {{1,11}} 491: {{1,15}}
101: {{1,6}} 299: {{1,2},{2,2}} 499: {{3,8}}
137: {{2,5}} 301: {{1,1},{1,4}} 511: {{1,1},{2,4}}
139: {{1,7}} 313: {{3,6}} 553: {{1,1},{1,5}}
149: {{3,4}} 329: {{1,1},{2,3}} 559: {{1,2},{1,4}}
The case with only one edge is
A106349.
The case covering an initial interval is
A320461.
The version allowing multiple edges is
A339112.
The half-loop version covering an initial interval is
A340018.
A006450 lists primes of prime index.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326754,
A326788.
-
Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeOmega[PrimePi[p]]!=2]&]
A330102
BII-number of the VDD-normalization of the set-system with BII-number n.
Original entry on oeis.org
0, 1, 1, 3, 4, 5, 5, 7, 1, 3, 3, 11, 33, 19, 19, 15, 4, 5, 33, 19, 20, 21, 37, 23, 5, 7, 19, 15, 37, 23, 51, 31, 4, 33, 5, 19, 20, 37, 21, 23, 5, 19, 7, 15, 37, 51, 23, 31, 20, 37, 37, 51, 52, 53, 53, 55, 21, 23, 23, 31, 53, 55, 55, 63, 64, 65, 65, 67, 68, 69, 69
Offset: 0
56 is the BII-number of {{3},{1,3},{2,3}}, which has VDD-normalization {{1},{1,2},{1,3}} with BII-number 21, so a(56) = 21.
This sequence is idempotent and its image/fixed points are
A330100.
Non-isomorphic multiset partitions are
A007716.
Unlabeled spanning set-systems counted by vertices are
A055621.
Unlabeled set-systems counted by weight are
A283877.
Cf.
A000120,
A000612,
A048793,
A070939,
A300913,
A319559,
A321405,
A326031,
A326754,
A330061,
A330101.
Other fixed points:
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
fbi[q_]:=If[q=={},0,Total[2^q]/2];
sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
Table[fbi[fbi/@sysnorm[bpe/@bpe[n]]],{n,0,100}]
A367917
BII-numbers of set-systems with the same number of edges as covered vertices.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152
Offset: 1
The terms together with the corresponding set-systems begin:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
17: {{1},{1,3}}
19: {{1},{2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
24: {{3},{1,3}}
26: {{2},{3},{1,3}}
28: {{1,2},{3},{1,3}}
34: {{2},{2,3}}
35: {{1},{2},{2,3}}
37: {{1},{1,2},{2,3}}
A070939 gives length of binary expansion.
A136556 counts set-systems on {1..n} with n edges.
Cf.
A057500,
A059201,
A072639,
A096111,
A116508,
A309326,
A326031,
A326702,
A326753,
A326754,
A367770,
A367902,
A367905.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
Select[Range[0,100], Length[bpe[#]]==Length[Union@@bpe/@bpe[#]]&]
A368186
Number of n-covers of an unlabeled n-set.
Original entry on oeis.org
1, 1, 2, 9, 87, 1973, 118827, 20576251, 10810818595, 17821875542809, 94589477627232498, 1651805220868992729874, 96651473179540769701281003, 19238331716776641088273777321428, 13192673305726630096303157068241728202, 31503323006770789288222386469635474844616195
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 set-systems:
{{1}} {{1},{2}} {{1},{2},{3}}
{{1},{1,2}} {{1},{2},{1,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{1,2,3}}
Covers with any number of edges are counted by
A003465, unlabeled
A055621.
Cf.
A000088,
A002494,
A006126,
A055130,
A133686,
A140638,
A305000,
A317795,
A326754,
A367901,
A367902,
A367903.
-
brute[m_]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i, p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}];
Table[Length[Union[First[Sort[brute[#]]]& /@ Select[Subsets[Rest[Subsets[Range[n]]],{n}], Union@@#==Range[n]&]]], {n,0,3}]
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t)={2^sum(j=1, #q, gcd(t, q[j])) - 1}
G(n,m)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, m, K(q,t)*x^t/t, O(x*x^m))); s+=permcount(q)*exp(g - subst(g,x,x^2))); s/n!)}
a(n)=if(n ==0, 1, polcoef(G(n,n) - G(n-1,n), n)) \\ Andrew Howroyd, Jan 03 2024
A340018
MM-numbers of labeled graphs with half-loops covering an initial interval of positive integers, without isolated vertices.
Original entry on oeis.org
1, 3, 13, 15, 39, 65, 141, 143, 145, 165, 195, 377, 429, 435, 611, 705, 715, 1131, 1363, 1551, 1595, 1833, 1885, 1937, 2021, 2117, 2145, 2235, 2365, 2397, 2409, 2431, 2465, 2805, 3055, 4089, 4147, 4785, 5655, 5811, 6063, 6149, 6235, 6351, 6409, 6721, 6815
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {}
3: {{1}}
13: {{1,2}}
15: {{1},{2}}
39: {{1},{1,2}}
65: {{2},{1,2}}
141: {{1},{2,3}}
143: {{3},{1,2}}
145: {{2},{1,3}}
165: {{1},{2},{3}}
195: {{1},{2},{1,2}}
377: {{1,2},{1,3}}
429: {{1},{3},{1,2}}
435: {{1},{2},{1,3}}
611: {{1,2},{2,3}}
705: {{1},{2},{2,3}}
715: {{2},{3},{1,2}}
1131: {{1},{1,2},{1,3}}
The version with full loops is
A320461.
The version not necessarily covering an initial interval is
A340019.
MM-numbers of graphs with loops are
A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326754,
A326788.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
Select[Range[1000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]
A371447
Numbers whose binary indices of prime indices cover an initial interval of positive integers.
Original entry on oeis.org
1, 2, 4, 5, 6, 8, 10, 12, 15, 16, 17, 18, 20, 24, 25, 26, 30, 32, 33, 34, 35, 36, 40, 42, 45, 47, 48, 50, 51, 52, 54, 55, 60, 64, 65, 66, 68, 70, 72, 75, 78, 80, 84, 85, 86, 90, 94, 96, 99, 100, 102, 104, 105, 108, 110, 119, 120, 123, 125, 126, 127, 128, 130
Offset: 1
The terms together with their binary indices of prime indices begin:
1: {}
2: {{1}}
4: {{1},{1}}
5: {{1,2}}
6: {{1},{2}}
8: {{1},{1},{1}}
10: {{1},{1,2}}
12: {{1},{1},{2}}
15: {{2},{1,2}}
16: {{1},{1},{1},{1}}
17: {{1,2,3}}
18: {{1},{2},{2}}
20: {{1},{1},{1,2}}
24: {{1},{1},{1},{2}}
25: {{1,2},{1,2}}
26: {{1},{2,3}}
30: {{1},{2},{1,2}}
32: {{1},{1},{1},{1},{1}}
For prime indices of prime indices we have
A320456.
For binary indices of binary indices we have
A326754.
The case with squarefree product of prime indices is
A371448.
The connected components of this multiset system are counted by
A371451.
A000009 counts partitions covering initial interval, compositions
A107429.
A011782 counts multisets covering an initial interval.
A070939 gives length of binary expansion.
A131689 counts patterns by number of distinct parts.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],normQ[Join@@bpe/@prix[#]]&]
A330195
BII-number of the BII-normalization of the set-system with BII-number n.
Original entry on oeis.org
0, 1, 1, 3, 4, 5, 5, 7, 1, 3, 3, 11, 12, 13, 13, 15, 4, 5, 12, 13, 20, 21, 22, 23, 5, 7, 13, 15, 22, 23, 30, 31, 4, 12, 5, 13, 20, 22, 21, 23, 5, 13, 7, 15, 22, 30, 23, 31, 20, 22, 22, 30, 52, 53, 53, 55, 21, 23, 23, 31, 53, 55, 55, 63, 64, 65, 65, 67, 68, 69
Offset: 0
This sequence is idempotent and its image/fixed points are
A330109.
Unlabeled spanning set-systems counted by vertices are
A055621.
Unlabeled set-systems counted by weight are
A283877.
Other fixed points:
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
fbi[q_]:=If[q=={},0,Total[2^q]/2];
biinorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],biinorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[SortBy[brute[m,1],fbi[fbi/@#]&]]];
brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
Table[fbi[fbi/@biinorm[bpe/@bpe[n]]],{n,0,100}]
A371448
Numbers such that (1) the product of prime indices is squarefree, and (2) the binary indices of prime indices cover an initial interval of positive integers.
Original entry on oeis.org
1, 2, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 26, 30, 32, 33, 34, 40, 47, 48, 51, 52, 55, 60, 64, 66, 68, 80, 85, 86, 94, 96, 102, 104, 110, 120, 123, 127, 128, 132, 136, 141, 143, 160, 165, 170, 172, 187, 188, 192, 204, 205, 208, 215, 220, 221, 226, 240, 246
Offset: 1
The terms together with their binary indices of prime indices begin:
1: {}
2: {{1}}
4: {{1},{1}}
5: {{1,2}}
6: {{1},{2}}
8: {{1},{1},{1}}
10: {{1},{1,2}}
12: {{1},{1},{2}}
15: {{2},{1,2}}
16: {{1},{1},{1},{1}}
17: {{1,2,3}}
20: {{1},{1},{1,2}}
24: {{1},{1},{1},{2}}
26: {{1},{2,3}}
30: {{1},{2},{1,2}}
32: {{1},{1},{1},{1},{1}}
33: {{2},{1,3}}
34: {{1},{1,2,3}}
40: {{1},{1},{1},{1,2}}
47: {{1,2,3,4}}
48: {{1},{1},{1},{1},{2}}
51: {{2},{1,2,3}}
The connected components of this multiset system are counted by
A371451.
A000009 counts partitions covering initial interval, compositions
A107429.
A011782 counts multisets covering an initial interval.
A070939 gives length of binary expansion.
A131689 counts patterns by number of distinct parts.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000], SquareFreeQ[Times@@prix[#]]&&normQ[Join@@bpe/@prix[#]]&]
A329661
BII-number of the set-system whose MM-number is A329629(n).
Original entry on oeis.org
0, 1, 2, 8, 4, 3, 128, 16, 32768, 9, 5, 2147483648, 256, 32, 129, 10, 9223372036854775808, 6, 170141183460469231731687303715884105728, 512, 65536, 57896044618658097711785492504343953926634992332820282019728792003956564819968, 130, 17, 32769, 4294967296
Offset: 1
The sequence of all set-systems together with their MM-numbers and BII-numbers begins:
{}: 1 ~ 0
{{1}}: 3 ~ 1
{{2}}: 5 ~ 2
{{3}}: 11 ~ 8
{{1,2}}: 13 ~ 4
{{1},{2}}: 15 ~ 3
{{4}}: 17 ~ 128
{{1,3}}: 29 ~ 16
{{5}}: 31 ~ 32768
{{1},{3}}: 33 ~ 9
{{1},{1,2}}: 39 ~ 5
{{6}}: 41 ~ 2147483648
{{1,4}}: 43 ~ 256
{{2,3}}: 47 ~ 32
{{1},{4}}: 51 ~ 129
{{2},{3}}: 55 ~ 10
{{7}}: 59 ~ 9223372036854775808
{{2},{1,2}}: 65 ~ 6
{{8}}: 67 ~ 170141183460469231731687303715884105728
{{2,4}}: 73 ~ 512
MM-numbers of set-systems are
A329629.
-
fbi[q_]:=If[q=={},0,Total[2^q]/2];
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
das=Select[Range[100],OddQ[#]&&SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&];
Table[fbi[fbi/@primeMS/@primeMS[n]],{n,das}]
Comments