cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A330234 Number of achiral factorizations of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 0, 1, 2, 2, 5, 1, 0, 1, 0, 2, 2, 1, 0, 2, 2, 3, 0, 1, 2, 1, 7, 2, 2, 2, 5, 1, 2, 2, 0, 1, 2, 1, 0, 0, 2, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 2, 1, 0, 1, 2, 0, 11, 2, 2, 1, 0, 2, 2, 1, 0, 1, 2, 0, 0, 2, 2, 1, 0, 5, 2, 1, 0, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A multiset of multisets is achiral if it is not changed by any permutation of the vertices. A factorization is achiral if taking the multiset of prime indices of each factor gives an achiral multiset of multisets.

Examples

			The a(n) factorizations for n = 2, 6, 27, 36, 243, 216:
  (2)  (6)    (27)     (36)       (243)        (216)
       (2*3)  (3*9)    (4*9)      (3*81)       (6*36)
              (3*3*3)  (6*6)      (9*27)       (8*27)
                       (2*3*6)    (3*9*9)      (12*18)
                       (2*2*3*3)  (3*3*27)     (4*6*9)
                                  (3*3*3*9)    (6*6*6)
                                  (3*3*3*3*3)  (2*3*36)
                                               (2*3*4*9)
                                               (2*3*6*6)
                                               (2*2*3*3*6)
                                               (2*2*2*3*3*3)
		

Crossrefs

The fully chiral version is A330235.
Planted achiral trees are A003238.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
MM-numbers of achiral multisets of multisets are A330232.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[facs[n],Length[graprms[primeMS/@#]]==1&]],{n,100}]

A330235 Number of fully chiral factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 4, 1, 0, 0, 5, 1, 4, 1, 4, 0, 0, 1, 7, 2, 0, 3, 4, 1, 0, 1, 7, 0, 0, 0, 4, 1, 0, 0, 7, 1, 0, 1, 4, 4, 0, 1, 12, 2, 4, 0, 4, 1, 7, 0, 7, 0, 0, 1, 4, 1, 0, 4, 11, 0, 0, 1, 4, 0, 0, 1, 16, 1, 0, 4, 4, 0, 0, 1, 12, 5, 0, 1, 4, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A multiset of multisets is fully chiral every permutation of the vertices gives a different representative. A factorization is fully chiral if taking the multiset of prime indices of each factor gives a fully chiral multiset of multisets.

Examples

			The a(n) factorizations for n = 1, 4, 8, 12, 16, 24, 48:
  ()  (4)    (8)      (12)     (16)       (24)       (48)
      (2*2)  (2*4)    (2*6)    (2*8)      (3*8)      (6*8)
             (2*2*2)  (3*4)    (4*4)      (4*6)      (2*24)
                      (2*2*3)  (2*2*4)    (2*12)     (3*16)
                               (2*2*2*2)  (2*2*6)    (4*12)
                                          (2*3*4)    (2*3*8)
                                          (2*2*2*3)  (2*4*6)
                                                     (3*4*4)
                                                     (2*2*12)
                                                     (2*2*2*6)
                                                     (2*2*3*4)
                                                     (2*2*2*2*3)
		

Crossrefs

The costrict (or T_0) version is A316978.
The achiral version is A330234.
Planted achiral trees are A003238.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Full chiral partitions are A330228.
Fully chiral covering set-systems are A330229.
MM-numbers of fully chiral multisets of multisets are A330236.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[facs[n],Length[graprms[primeMS/@#]]==Length[Union@@primeMS/@#]!&]],{n,100}]

A330224 Number of achiral integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 13, 18, 21, 30, 32, 43, 46, 57, 64, 79, 83, 103, 107, 130, 141, 162, 171, 205, 214, 245, 258, 297, 307, 357, 373, 423, 441, 493, 513, 591, 607, 674, 702, 790, 817, 917, 938, 1040, 1078, 1186, 1216, 1362, 1395, 1534, 1580, 1738, 1779, 1956
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A multiset of multisets is achiral if it is not changed by any permutation of the vertices. An integer partition is achiral if taking the multiset of prime indices of each part gives an achiral multiset of multisets.

Examples

			The a(1) = 1 through a(7) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (52)
             (111)  (31)    (41)     (42)      (61)
                    (211)   (221)    (51)      (331)
                    (1111)  (311)    (222)     (421)
                            (2111)   (321)     (511)
                            (11111)  (411)     (2221)
                                     (2211)    (3211)
                                     (3111)    (4111)
                                     (21111)   (22111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

The fully-chiral version is A330228.
The Heinz numbers of these partitions are given by A330232.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral factorizations are A330234.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[IntegerPartitions[n],Length[graprms[primeMS/@#]]==1&]],{n,0,30}]

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A330194 MM-number of the MM-normalization of the multiset of multisets with MM-number n.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 7, 8, 9, 6, 3, 12, 13, 14, 15, 16, 3, 18, 19, 12, 21, 6, 7, 24, 9, 26, 27, 28, 13, 30, 3, 32, 15, 6, 35, 36, 37, 38, 39, 24, 3, 42, 13, 12, 45, 14, 13, 48, 49, 18, 15, 52, 53, 54, 15, 56, 57, 26, 3, 60, 37, 6, 63, 64, 39, 30, 3, 12, 35, 70
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

First differs from A330105 at a(35) = 35, A330105(35) = 69.
First differs from A330061 at a(175) = 175, A330061(175) = 207.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
We define the MM-normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the representative with the smallest MM-number.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}

Crossrefs

This sequence is idempotent and its image/fixed points are A330108.
Non-isomorphic multiset partitions are A007716.
MM-weight is A302242.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mmnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],mmnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[SortBy[brute[m,1],Map[Times@@Prime/@#&,#,{0,1}]&]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Table[Map[Times@@Prime/@#&,mmnorm[primeMS/@primeMS[n]],{0,1}],{n,100}]

Formula

a(n) <= n.

A330218 Least BII-number of a set-system with n distinct representatives obtainable by permuting the vertices.

Original entry on oeis.org

0, 5, 12, 180, 35636, 13
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of set-systems together with their BII-numbers begins:
      0: {}
      5: {{1},{1,2}}
     12: {{1,2},{3}}
    180: {{1,2},{1,3},{2,3},{4}}
  35636: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{5}}
     13: {{1},{1,2},{3}}
		

Crossrefs

Positions of first appearances in A330231.
The MM-number version is A330230.
Achiral set-systems are counted by A083323.
BII-numbers of fully chiral set-systems are A330226.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]];
    dv=Table[Length[graprms[bpe/@bpe[n]]],{n,0,1000}];
    Table[Position[dv,i][[1,1]]-1,{i,First[Split[Union[dv],#1+1==#2&]]}]

A330282 Number of fully chiral set-systems on n vertices.

Original entry on oeis.org

1, 2, 5, 52, 21521
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.

Examples

			The a(0) = 1 through a(2) = 5 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

Costrict (or T_0) set-systems are A326940.
The covering case is A330229.
The unlabeled version is A330294, with covering case A330295.
Achiral set-systems are A083323.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Length[graprms[#]]==Length[Union@@#]!&]],{n,0,3}]

Formula

Binomial transform of A330229.

A330294 Number of non-isomorphic fully chiral set-systems on n vertices.

Original entry on oeis.org

1, 2, 3, 10, 899
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 10 set-systems:
  0  0    0        0
     {1}  {1}      {1}
          {2}{12}  {2}{12}
                   {1}{3}{23}
                   {2}{13}{23}
                   {3}{23}{123}
                   {2}{3}{13}{23}
                   {1}{3}{23}{123}
                   {2}{13}{23}{123}
                   {2}{3}{13}{23}{123}
		

Crossrefs

The labeled version is A330282.
Partial sums of A330295 (the covering case).
Unlabeled costrict (or T_0) set-systems are A326946.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

A330295 Number of non-isomorphic fully chiral set-systems covering n vertices.

Original entry on oeis.org

1, 1, 1, 7, 889
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 7 set-systems:
  0  {1}  {1}{12}  {1}{2}{13}
                   {1}{12}{23}
                   {1}{12}{123}
                   {1}{2}{12}{13}
                   {1}{2}{13}{123}
                   {1}{12}{23}{123}
                   {1}{2}{12}{13}{123}
		

Crossrefs

The labeled version is A330229.
First differences of A330294 (the non-covering case).
Unlabeled costrict (or T_0) set-systems are A326946.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

A330297 Number of labeled simple graphs covering n vertices with exactly two automorphisms, or with exactly n!/2 graphs obtainable by permuting the vertices.

Original entry on oeis.org

0, 0, 1, 3, 24, 540, 13320
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2019

Keywords

Comments

These are graphs with exactly one involution and no other symmetries.

Examples

			The a(4) = 24 graphs:
  {12,13,24}  {12,13,14,23}
  {12,13,34}  {12,13,14,24}
  {12,14,23}  {12,13,14,34}
  {12,14,34}  {12,13,23,24}
  {12,23,34}  {12,13,23,34}
  {12,24,34}  {12,14,23,24}
  {13,14,23}  {12,14,24,34}
  {13,14,24}  {12,23,24,34}
  {13,23,24}  {13,14,23,34}
  {13,24,34}  {13,14,24,34}
  {14,23,24}  {13,23,24,34}
  {14,23,34}  {14,23,24,34}
		

Crossrefs

The non-covering version is A330345.
The unlabeled version is A330346 (not A241454).
Covering simple graphs are A006129.
Covering graphs with exactly one automorphism are A330343.
Graphs with exactly two automorphisms are A330297 (labeled covering), A330344 (unlabeled), A330345 (labeled), and A330346 (unlabeled covering).

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[graprms[#]]==n!/2&]],{n,0,5}]

Formula

a(n) = n!/2 * A330346(n).

A330344 Number of unlabeled graphs with n vertices whose covered portion has exactly two automorphisms.

Original entry on oeis.org

0, 1, 2, 4, 13, 50, 367
Offset: 1

Views

Author

Gus Wiseman, Dec 12 2019

Keywords

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 graphs:
  {12}  {12}     {12}           {12}
        {12,13}  {12,13}        {12,13}
                 {12,13,24}     {12,13,24}
                 {12,13,14,23}  {12,13,14,23}
                                {12,13,14,25}
                                {12,13,24,35}
                                {12,13,14,23,25}
                                {12,13,14,23,45}
                                {12,13,15,24,34}
                                {12,13,14,15,23,24}
                                {12,13,14,23,24,35}
                                {12,13,14,23,25,45}
                                {12,13,14,15,23,24,35}
		

Crossrefs

The labeled version is A330345.
The covering case is A330346 (not A241454).
Unlabeled graphs are A000088.
Unlabeled graphs with exactly one automorphism are A003400.
Unlabeled connected graphs with exactly one automorphism are A124059.
Graphs with exactly two automorphisms are A330297 (labeled covering), A330344 (unlabeled), A330345 (labeled), and A330346 (unlabeled covering).

Formula

Partial sums of A330346.
Previous Showing 21-30 of 34 results. Next