cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A352513 Number of nonfixed points in the n-th composition in standard order.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 0, 2, 1, 2, 1, 3, 1, 1, 2, 3, 1, 2, 1, 3, 2, 2, 3, 4, 1, 2, 1, 2, 1, 3, 3, 4, 1, 2, 1, 3, 2, 2, 3, 4, 2, 3, 2, 3, 2, 4, 4, 5, 1, 2, 2, 3, 0, 2, 2, 3, 2, 2, 3, 4, 3, 4, 4, 5, 1, 2, 1, 3, 2, 2, 3, 4, 2, 3, 2, 3, 2, 4, 4, 5, 2, 3, 3, 4, 1, 3, 3
Offset: 0

Views

Author

Gus Wiseman, Mar 27 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.
A nonfixed point in a composition c is an index i such that c_i != i.

Examples

			The 169th composition in standard order is (2,2,3,1), with nonfixed points {1,4}, so a(169) = 2.
		

Crossrefs

The version counting permutations is A098825, fixed A008290.
Fixed points are counted by A352512, triangle A238349, first A238351.
The triangular version is A352523, first nontrivial column A352520.
A011782 counts compositions.
A352486 gives the nonfixed points of A122111, counted by A330644.
A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
A352522 counts comps by weak nonexcedances, first col A238874, stat A352515.
A352524 counts comps by strong excedances, first col A008930, stat A352516.
A352525 counts comps by weak excedances, first col A177510, stat A352517.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pnq[y_]:=Length[Select[Range[Length[y]],#!=y[[#]]&]];
    Table[pnq[stc[n]],{n,0,100}]

Formula

A000120(n) = A352512(n) + A352513(n).

A352491 n minus the Heinz number of the conjugate of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, -1, 1, -3, 0, -9, 3, 0, -2, -21, 2, -51, -10, -3, 9, -111, 3, -237, 0, -15, -26, -489, 10, -2, -70, 2, -12, -995, 0, -2017, 21, -39, -158, -19, 15, -4059, -346, -105, 12, -8151, -18, -16341, -36, -5, -722, -32721, 26, -32, 5, -237, -108, -65483, 19, -53
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Problem: What is the image? In the nonnegative case it appears to start: 0, 1, 2, 3, 5, 7, 9, ...

Examples

			The partition (4,4,1,1) has Heinz number 196 and its conjugate (4,2,2,2) has Heinz number 189, so a(196) = 196 - 189 = 7.
		

Crossrefs

Positions of zeros are A088902, counted by A000700.
A similar sequence is A175508.
Positions of nonzero terms are A352486, counted by A330644.
Positions of negative terms are A352487, counted by A000701.
Positions of nonnegative terms are A352488, counted by A046682.
Positions of nonpositive terms are A352489, counted by A046682.
Positions of positive terms are A352490, counted by A000701.
A000041 counts integer partitions, strict A000009.
A003963 is product of prime indices, conjugate A329382.
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 is partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A238744 is partition conjugate of prime signature, ranked by A238745.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[n-Times@@Prime/@conj[primeMS[n]],{n,30}]

Formula

a(n) = n - A122111(n).

A352833 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k fixed points, k = 0, 1.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 6, 5, 8, 7, 12, 10, 16, 14, 23, 19, 30, 26, 42, 35, 54, 47, 73, 62, 94, 82, 124, 107, 158, 139, 206, 179, 260, 230, 334, 293, 420, 372, 532, 470, 664, 591, 835, 740, 1034, 924, 1288, 1148, 1588, 1422, 1962, 1756, 2404, 2161
Offset: 0

Views

Author

Gus Wiseman, Apr 08 2022

Keywords

Comments

A fixed point of a sequence y is an index y(i) = i. A fixed point of a partition is unique if it exists, so all columns k > 1 are zeros.
Conjecture:
(1) This is A064428 interleaved with A001522.
(2) Reversing rows gives A300788, the strict version of A300787.

Examples

			Triangle begins:
  0: {1,0}
  1: {0,1}
  2: {1,1}
  3: {2,1}
  4: {3,2}
  5: {4,3}
  6: {6,5}
  7: {8,7}
  8: {12,10}
  9: {16,14}
For example, row n = 7 counts the following partitions:
  (7)       (52)
  (61)      (421)
  (511)     (322)
  (43)      (3211)
  (4111)    (2221)
  (331)     (22111)
  (31111)   (1111111)
  (211111)
		

Crossrefs

Row sums are A000041.
The version for permutations is A008290, for nonfixed points A098825.
The columns appear to be A064428 and A001522.
The version counting strong nonexcedances is A114088.
The version for compositions is A238349, rank statistic A352512.
The version for reversed partitions is A238352.
Reversing rows appears to give A300788, the strict case of A300787.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 and A115994 count partitions by their Durfee square.
A330644 counts non-self-conjugate partitions, ranked by A352486.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],pq[#]==k&]],{n,0,15},{k,0,1}]

A352490 Nonexcedance set of A122111. Numbers k > A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

4, 8, 12, 16, 18, 24, 27, 32, 36, 40, 48, 50, 54, 60, 64, 72, 80, 81, 90, 96, 100, 108, 112, 120, 128, 135, 140, 144, 150, 160, 162, 168, 180, 192, 196, 200, 216, 224, 225, 240, 243, 250, 252, 256, 270, 280, 288, 300, 315, 320, 324, 336, 352, 360, 375, 378
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is greater than that of their conjugate.

Examples

			The terms together with their prime indices begin:
    4: (1,1)
    8: (1,1,1)
   12: (2,1,1)
   16: (1,1,1,1)
   18: (2,2,1)
   24: (2,1,1,1)
   27: (2,2,2)
   32: (1,1,1,1,1)
   36: (2,2,1,1)
   40: (3,1,1,1)
   48: (2,1,1,1,1)
   50: (3,3,1)
   54: (2,2,2,1)
   60: (3,2,1,1)
   64: (1,1,1,1,1,1)
For example, the partition (4,4,1,1) has Heinz number 196 and its conjugate (4,2,2,2) has Heinz number 189, and 196 > 189, so 196 is in the sequence, and 189 is not.
		

Crossrefs

These partitions are counted by A000701.
The opposite version is A352487, weak A352489.
The weak version is A352488, counted by A046682.
These are the positions of positive terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352521 counts compositions by subdiagonals, rank statistic A352514.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#>Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) > A122111(a(n)).

A329382 Product of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 4, 2, 1, 3, 1, 2, 4, 4, 1, 6, 1, 3, 4, 2, 1, 4, 8, 2, 9, 3, 1, 6, 1, 5, 4, 2, 8, 8, 1, 2, 4, 4, 1, 6, 1, 3, 9, 2, 1, 5, 16, 12, 4, 3, 1, 12, 8, 4, 4, 2, 1, 8, 1, 2, 9, 6, 8, 6, 1, 3, 4, 12, 1, 10, 1, 2, 18, 3, 16, 6, 1, 5, 16, 2, 1, 8, 8, 2, 4, 4, 1, 12, 16, 3, 4, 2, 8, 6, 1, 24, 9, 16, 1, 6, 1, 4, 18
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Comments

Also the product of parts of the conjugate of the integer partition with Heinz number n, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). For example, the partition (3,2) with Heinz number 15 has conjugate (2,2,1) with product a(15) = 4. - Gus Wiseman, Mar 27 2022

Crossrefs

This is the conjugate version of A003963 (product of prime indices).
The solutions to a(n) = A003963(n) are A325040, counted by A325039.
The Heinz number of the conjugate partition is given by A122111.
These are the row products of A321649 and of A321650.
A000700 counts self-conj partitions, ranked by A088902, complement A330644.
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and of A296150.
A124010 gives prime signature, sorted A118914, sum A001222.
A238744 gives the conjugate of prime signature, rank A238745.

Programs

  • Mathematica
    Table[Times @@ FactorInteger[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]][[All, -1]], {n, 105}] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A005361(n) = factorback(factor(n)[, 2]); \\ from A005361
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A329382(n) = A005361(A108951(n));
    
  • PARI
    A329382(n) = if(1==n,1,my(f=factor(n),e=0,m=1); forstep(i=#f~,1,-1, e += f[i,2]; m *= e^(primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1])))); (m)); \\ Antti Karttunen, Jan 14 2020

Formula

a(n) = A005361(A108951(n)).
A329605(n) >= a(n) >= A329617(n) >= A329378(n).
a(A019565(n)) = A284001(n).
From Antti Karttunen, Jan 14 2020: (Start)
If n = p(k1)^e(k1) * p(k2)^e(k2) * p(k3)^e(k3) * ... * p(kx)^e(kx), with p(n) = A000040(n) and k1 > k2 > k3 > ... > kx, then a(n) = e(k1)^(k1-k2) * (e(k1)+e(k2))^(k2-k3) * (e(k1)+e(k2)+e(k3))^(k3-k4) * ... * (e(k1)+e(k2)+...+e(kx))^kx.
a(n) = A000005(A331188(n)) = A329605(A052126(n)).
(End)
a(n) = A003963(A122111(n)). - Gus Wiseman, Mar 27 2022

A352487 Excedance set of A122111. Numbers k < A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than that of their conjugate.

Examples

			The terms together with their prime indices begin:
   3: (2)
   5: (3)
   7: (4)
  10: (3,1)
  11: (5)
  13: (6)
  14: (4,1)
  15: (3,2)
  17: (7)
  19: (8)
  21: (4,2)
  22: (5,1)
  23: (9)
  25: (3,3)
  26: (6,1)
  28: (4,1,1)
For example, the partition (4,1,1) has Heinz number 28 and its conjugate (3,1,1,1) has Heinz number 40, and 28 < 40, so 28 is in the sequence, and 40 is not.
		

Crossrefs

These partitions are counted by A000701.
The weak version is A352489, counted by A046682.
The opposite version is A352490, weak A352488.
These are the positions of negative terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A238744 = partition conjugate of prime signature, ranked by A238745.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352521 counts compositions by subdiagonals, rank statistic A352514.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#
    				

Formula

a(n) < A122111(a(n)).

A352488 Weak nonexcedance set of A122111. Numbers k >= A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 100, 108, 112, 120, 125, 128, 135, 140, 144, 150, 160, 162, 168, 176, 180, 192, 196, 200, 210, 216, 224, 225, 240, 243, 250, 252, 256, 264, 270, 280
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is greater than or equal to that of their conjugate.

Examples

			The terms together with their prime indices begin:
    1: ()
    2: (1)
    4: (1,1)
    6: (2,1)
    8: (1,1,1)
    9: (2,2)
   12: (2,1,1)
   16: (1,1,1,1)
   18: (2,2,1)
   20: (3,1,1)
   24: (2,1,1,1)
   27: (2,2,2)
   30: (3,2,1)
   32: (1,1,1,1,1)
   36: (2,2,1,1)
   40: (3,1,1,1)
   48: (2,1,1,1,1)
   50: (3,3,1)
   54: (2,2,2,1)
   56: (4,1,1,1)
		

Crossrefs

These partitions are counted by A046682.
The opposite version is A352489, strong A352487.
The strong version is A352490, counted by A000701.
These are the positions of nonnegative terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352525 counts compositions by weak superdiagonals, rank statistic A352517.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#>=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) >= A122111(a(n)).

A352489 Weak excedance set of A122111. Numbers k <= A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than or equal to that of their conjugate.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   3: (2)
   5: (3)
   6: (2,1)
   7: (4)
   9: (2,2)
  10: (3,1)
  11: (5)
  13: (6)
  14: (4,1)
  15: (3,2)
  17: (7)
  19: (8)
  20: (3,1,1)
For example, the partition (3,2,2) has Heinz number 45 and its conjugate (3,3,1) has Heinz number 50, and 45 <= 50, so 45 is in the sequence, and 50 is not.
		

Crossrefs

These partitions are counted by A046682.
The strong version is A352487, counted by A000701.
The opposite version is A352488, strong A352490
These are the positions of nonpositive terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352522 counts compositions by weak subdiagonals, rank statistic A352515.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#<=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) <= A122111(a(n)).

A118199 Number of partitions of n having no parts equal to the size of their Durfee squares.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 31, 40, 53, 68, 89, 113, 146, 184, 234, 293, 369, 458, 572, 706, 874, 1073, 1320, 1611, 1970, 2393, 2909, 3518, 4255, 5122, 6167, 7394, 8862, 10585, 12637, 15038, 17886, 21213, 25141, 29723, 35112, 41383, 48737, 57278
Offset: 0

Views

Author

Emeric Deutsch, Apr 14 2006

Keywords

Comments

a(n) = A118198(n,0).
From Gus Wiseman, May 21 2022: (Start)
Also the number of integer partitions of n > 0 that have a fixed point but whose conjugate does not, ranked by A353316. For example, the a(5) = 1 through a(10) = 10 partitions are:
11111 222 322 422 522 622
111111 2221 2222 3222 4222
1111111 3221 4221 5221
22211 22221 22222
11111111 32211 32221
222111 42211
111111111 222211
322111
2221111
1111111111
Partitions w/ a fixed point: A001522 (unproved), ranked by A352827 (cf. A352874).
Partitions w/o a fixed point: A064428 (unproved), ranked by A352826 (cf. A352873).
Partitions w/ a fixed point and a conjugate fixed point: A188674, reverse A325187, ranked by A353317.
Partitions w/o a fixed point or conjugate fixed point: A188674 (shifted).
(End)

Examples

			a(7) = 3 because we have [7] with size of Durfee square 1, [4,3] with size of Durfee square 2 and [3,3,1] with size of Durfee square 2.
		

Crossrefs

Column k=0 of A118198.
A000041 counts partitions, strict A000009.
A000700 = self-conjugate partitions, ranked by A088902, complement A330644.
A002467 counts permutations with a fixed point, complement A000166.
A064410 counts partitions of crank 0, ranked by A342192.
A115720 and A115994 count partitions by Durfee square, rank stat A257990.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.

Programs

  • Maple
    g:=1+sum(x^(k^2+k)/(1-x^k)/product((1-x^i)^2,i=1..k-1),k=1..20): gser:=series(g,x=0,60): seq(coeff(gser,x,n),n=0..54);
    # second Maple program::
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(add(b(k, d) *b(n-d*(d+1)-k, d-1),
                    k=0..n-d*(d+1)), d=0..floor(sqrt(n))):
    seq(a(n), n=0..70);  # Alois P. Heinz, Apr 09 2012
  • Mathematica
    b[n_, i_] :=  b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[Sum[b[k, d]*b[n-d*(d+1)-k, d-1], {k, 0, n-d*(d+1)}], {d, 0, Floor[Sqrt[n]]}]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],pq[#]>0&&pq[conj[#]]==0&]],{n,0,30}] (* a(0) = 0, Gus Wiseman, May 21 2022 *)

Formula

G.f.: 1+sum(x^(k^2+k)/[(1-x^k)*product((1-x^i)^2, i=1..k-1)], k=1..infinity).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (16*n*sqrt(3)). - Vaclav Kotesovec, Jun 12 2025

A352520 Number of integer compositions y of n with exactly one nonfixed point y(i) != i.

Original entry on oeis.org

0, 0, 2, 1, 4, 5, 3, 7, 8, 9, 6, 11, 12, 13, 14, 10, 16, 17, 18, 19, 20, 15, 22, 23, 24, 25, 26, 27, 21, 29, 30, 31, 32, 33, 34, 35, 28, 37, 38, 39, 40, 41, 42, 43, 44, 36, 46, 47, 48, 49, 50, 51, 52, 53, 54, 45, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 55, 67
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2022

Keywords

Examples

			The a(2) = 2 through a(8) = 8 compositions:
  (2)    (3)  (4)      (5)      (6)    (7)        (8)
  (1,1)       (1,3)    (1,4)    (1,5)  (1,6)      (1,7)
              (2,2)    (3,2)    (4,2)  (5,2)      (6,2)
              (1,2,1)  (1,1,3)         (1,2,4)    (1,2,5)
                       (1,2,2)         (1,3,3)    (1,4,3)
                                       (2,2,3)    (3,2,3)
                                       (1,2,3,1)  (1,2,1,4)
                                                  (1,2,3,2)
		

Crossrefs

Compositions with no nonfixed points are counted by A010054.
The version for weak excedances is A177510.
Compositions with no fixed points are counted by A238351.
The version for fixed points is A240736.
This is column k = 1 of A352523.
A011782 counts compositions.
A238349 counts compositions by fixed points, rank stat A352512.
A352486 gives the nonfixed points of A122111, counted by A330644.
A352513 counts nonfixed points in standard compositions.

Programs

  • Mathematica
    pnq[y_]:=Length[Select[Range[Length[y]],#!=y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pnq[#]==1&]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Mar 30 2022
Previous Showing 11-20 of 24 results. Next