cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 117 results. Next

A374634 Number of integer compositions of n whose leaders of weakly increasing runs are strictly increasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 17, 28, 43, 67, 103, 162, 245, 374, 569, 854, 1278, 1902, 2816, 4148, 6087, 8881, 12926, 18726, 27042, 38894, 55789, 79733, 113632, 161426, 228696, 323049, 455135, 639479, 896249, 1252905, 1747327, 2431035, 3374603, 4673880, 6459435, 8908173
Offset: 0

Views

Author

Gus Wiseman, Jul 23 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.

Examples

			The composition (1,3,3,2,4,3) has weakly increasing runs ((1,3,3),(2,4),(3)), with leaders (1,2,3), so is counted under a(16).
The a(0) = 1 through a(7) = 17 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)
           (11)  (12)   (13)    (14)     (15)      (16)
                 (111)  (22)    (23)     (24)      (25)
                        (112)   (113)    (33)      (34)
                        (1111)  (122)    (114)     (115)
                                (1112)   (123)     (124)
                                (11111)  (132)     (133)
                                         (222)     (142)
                                         (1113)    (223)
                                         (1122)    (1114)
                                         (11112)   (1123)
                                         (111111)  (1132)
                                                   (1222)
                                                   (11113)
                                                   (11122)
                                                   (111112)
                                                   (1111111)
		

Crossrefs

Ranked by positions of strictly increasing rows in A374629 (sums A374630).
Types of runs (instead of weakly increasing):
- For leaders of constant runs we have A000041.
- For leaders of anti-runs we have A374679.
- For leaders of strictly increasing runs we have A374688.
- For leaders of strictly decreasing runs we have A374762.
Types of run-leaders (instead of strictly increasing):
- For strictly decreasing leaders we appear to have A188920.
- For weakly decreasing leaders we appear to have A189076.
- For identical leaders we have A374631.
- For distinct leaders we have A374632, ranks A374768.
- For weakly increasing leaders we have A374635.
A003242 counts anti-run compositions.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A374637 counts compositions by sum of leaders of weakly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,LessEqual]&]],{n,0,15}]
  • PARI
    dfs(m, r, u) = 1 + sum(s=u+1, min(m, r-1), x^s/(1-x^s) + sum(t=s+1, m-s, dfs(m-s-t, t, s)*x^(s+t)/prod(i=s, t, 1-x^i)));
    lista(nn) = Vec(dfs(nn, nn+1, 0) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025

A374687 Number of integer compositions of n whose leaders of strictly increasing runs are distinct.

Original entry on oeis.org

1, 1, 1, 3, 3, 7, 11, 15, 27, 45, 65, 101, 161, 251, 381, 573, 865, 1321, 1975, 2965, 4387, 6467, 9579, 14091, 20669, 30135, 43869, 63531, 91831, 132575, 190567, 273209, 390659, 557069, 792371, 1124381, 1591977, 2249029, 3169993, 4458163, 6256201, 8762251, 12246541
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			The a(0) = 1 through a(7) = 15 compositions:
  ()  (1)  (2)  (3)   (4)   (5)    (6)    (7)
                (12)  (13)  (14)   (15)   (16)
                (21)  (31)  (23)   (24)   (25)
                            (32)   (42)   (34)
                            (41)   (51)   (43)
                            (122)  (123)  (52)
                            (212)  (132)  (61)
                                   (213)  (124)
                                   (231)  (133)
                                   (312)  (142)
                                   (321)  (214)
                                          (241)
                                          (313)
                                          (412)
                                          (421)
		

Crossrefs

Ranked by A374698.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A274174 for n > 0, ranks A374249.
- For leaders of anti-runs we have A374518, ranks A374638.
- For leaders of weakly increasing runs we have A374632, ranks A374768.
- For leaders of weakly decreasing runs we have A374743, ranks A374701.
- For leaders of strictly decreasing runs we have A374761, ranks A374767.
Types of run-leaders (instead of distinct):
- For identical leaders we have A374686, ranks A374685.
- For strictly increasing leaders we have A374688.
- For strictly decreasing leaders we have A374689.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374683 lists leaders of strictly increasing runs of standard compositions.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],UnsameQ@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    dfs(m, r, v) = 1 + sum(s=1, min(m, r), if(!setsearch(v, s), dfs(m-s, s, setunion(v, [s]))*x^s + sum(t=s+1, m-s, dfs(m-s-t, t, setunion(v, [s]))*x^(s+t)*prod(i=s+1, t-1, 1+x^i))));
    lista(nn) = Vec(dfs(nn, nn, []) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025

A258026 Numbers k such that prime(k+2) - 2*prime(k+1) + prime(k) < 0.

Original entry on oeis.org

4, 6, 9, 11, 12, 16, 18, 19, 21, 24, 25, 27, 30, 32, 34, 37, 40, 42, 44, 47, 48, 51, 53, 56, 58, 59, 62, 63, 66, 68, 72, 74, 77, 80, 82, 84, 87, 88, 91, 92, 94, 97, 99, 101, 103, 106, 108, 111, 112, 114, 115, 119, 121, 125, 127, 128, 130, 132, 133, 135, 137
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2015

Keywords

Comments

Positions of strict descents in the sequence of differences between primes. Partial sums of A333215. - Gus Wiseman, Mar 24 2020

Examples

			The prime gaps split into the following maximal weakly increasing subsequences: (1,2,2,4), (2,4), (2,4,6), (2,6), (4), (2,4,6,6), (2,6), (4), (2,6), (4,6,8), (4), (2,4), (2,4,14), ... Then a(n) is the n-th partial sum of the lengths of these subsequences. - _Gus Wiseman_, Mar 24 2020
		

Crossrefs

Partition of the positive integers: A064113, A258025, A258026;
Corresponding partition of the primes: A063535, A063535, A147812.
Adjacent terms differing by 1 correspond to strong prime quartets A054804.
The version for the Kolakoski sequence is A156242.
First differences are A333215 (if the first term is 0).
The version for strict ascents is A258025.
The version for weak ascents is A333230.
The version for weak descents is A333231.
Prime gaps are A001223.
Positions of adjacent equal prime gaps are A064113.
Weakly increasing runs of compositions in standard order are A124766.
Strictly decreasing runs of compositions in standard order are A124769.

Programs

  • Mathematica
    u = Table[Sign[Prime[n+2] - 2 Prime[n+1] + Prime[n]], {n, 1, 200}];
    Flatten[Position[u, 0]]   (* A064113 *)
    Flatten[Position[u, 1]]   (* A258025 *)
    Flatten[Position[u, -1]]  (* A258026 *)
    Accumulate[Length/@Split[Differences[Array[Prime,100]],LessEqual]]//Most (* Gus Wiseman, Mar 24 2020 *)
  • Python
    from itertools import count, islice
    from sympy import prime, nextprime
    def A258026_gen(startvalue=1): # generator of terms >= startvalue
        c = max(startvalue,1)
        p = prime(c)
        q = nextprime(p)
        r = nextprime(q)
        for k in count(c):
            if p+r<(q<<1):
                yield k
            p, q, r = q, r, nextprime(r)
    A258026_list = list(islice(A258026_gen(),20)) # Chai Wah Wu, Feb 27 2024

A349052 Number of weakly alternating compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 28, 52, 91, 161, 280, 491, 850, 1483, 2573, 4469, 7757, 13472, 23378, 40586, 70438, 122267, 212210, 368336, 639296, 1109620, 1925916, 3342755, 5801880, 10070133, 17478330, 30336518, 52653939, 91389518, 158621355, 275313226, 477850887, 829388075
Offset: 0

Views

Author

Gus Wiseman, Nov 29 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. A sequence is alternating iff it is a weakly alternating anti-run.

Examples

			The a(5) = 16 compositions:
  (1,1,1,1,1)  (1,1,1,2)  (1,1,3)  (1,4)  (5)
               (1,1,2,1)  (1,2,2)  (2,3)
               (1,2,1,1)  (1,3,1)  (3,2)
               (2,1,1,1)  (2,1,2)  (4,1)
                          (2,2,1)
                          (3,1,1)
The a(6) = 28 compositions:
  (111111)  (11112)  (1113)  (114)  (15)  (6)
            (11121)  (1122)  (132)  (24)
            (11211)  (1131)  (141)  (33)
            (12111)  (1212)  (213)  (42)
            (21111)  (1311)  (222)  (51)
                     (2121)  (231)
                     (2211)  (312)
                     (3111)  (411)
		

Crossrefs

The strong case is A025047, ranked by A345167.
The directed versions are A129852 and A129853, strong A025048 and A025049.
The complement is counted by A349053, strong A345192.
The version for permutations of prime indices is A349056, strong A345164.
The complement is ranked by A349057, strong A345168.
The version for patterns is A349058, strong A345194.
The multiplicative version is A349059, strong A348610.
An unordered version (partitions) is A349060, complement A349061.
The non-alternating case is A349800, ranked by A349799.
A001250 counts alternating permutations, complement A348615.
A001700 counts compositions of 2n with alternating sum 0.
A003242 counts Carlitz (anti-run) compositions.
A011782 counts compositions.
A106356 counts compositions by number of maximal anti-runs.
A344604 counts alternating compositions with twins.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349054 counts strict alternating compositions.

Programs

  • Mathematica
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],whkQ[#]||whkQ[-#]&]],{n,0,10}]
  • PARI
    C(n,f)={my(M=matrix(n,n,j,k,k>=j), s=M[,n]); for(b=1, n, f=!f; M=matrix(n,n,j,k, if(k1,M[j-k,k-1]) ))); for(k=2, n, M[,k]+=M[,k-1]); s+=M[,n]); s~}
    seq(n) = concat([1], C(n,0) + C(n,1) - vector(n,j,numdiv(j))) \\ Andrew Howroyd, Jan 31 2024

Extensions

a(21)-a(37) from Martin Ehrenstein, Jan 08 2022

A374630 Sum of leaders of weakly increasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 1, 1, 4, 4, 2, 3, 1, 2, 1, 1, 5, 5, 5, 4, 2, 3, 3, 3, 1, 2, 1, 2, 1, 2, 1, 1, 6, 6, 6, 5, 3, 6, 4, 4, 2, 3, 2, 3, 3, 4, 3, 3, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 7, 7, 7, 6, 7, 7, 5, 5, 3, 4, 5, 6, 4, 5, 4, 4, 2, 3, 4, 3, 2, 3, 3
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2,2),(1,2,5),(1,1,1)), so a(1234567) = 8.
		

Crossrefs

For length instead of sum we have A124766.
For leaders of constant runs we have A373953, excess A373954.
For leaders of anti-runs we have A374516.
Row-sums of A374629.
Counting compositions by this statistic gives A374637.
For leaders of strictly increasing runs we have A374684.
For leaders of weakly decreasing runs we have A374741.
For leaders of strictly decreasing runs we have A374758
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
All of the following pertain to compositions in standard order:
- Ones are counted by A000120.
- Sum is A029837 (or sometimes A070939).
- Listed by A066099.
- Length is A070939.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of strict compositions are A233564, counted by A032020.
- Constant compositions are ranked by A272919.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],LessEqual]],{n,0,100}]

A374631 Number of integer compositions of n whose leaders of weakly increasing runs are identical.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 19, 34, 63, 116, 218, 405, 763, 1436, 2714, 5127, 9718, 18422, 34968, 66397, 126168, 239820, 456027, 867325, 1649970, 3139288, 5973746, 11368487, 21636909, 41182648, 78389204, 149216039, 284046349, 540722066, 1029362133, 1959609449
Offset: 0

Views

Author

Gus Wiseman, Jul 23 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.

Examples

			The composition (1,3,1,4,1,2,2,1) has maximal weakly increasing subsequences ((1,3),(1,4),(1,2,2),(1)), with leaders (1,1,1,1), so is counted under a(15).
The a(0) = 1 through a(6) = 19 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (12)   (13)    (14)     (15)
                 (111)  (22)    (23)     (24)
                        (112)   (113)    (33)
                        (121)   (122)    (114)
                        (1111)  (131)    (123)
                                (1112)   (141)
                                (1121)   (222)
                                (1211)   (1113)
                                (11111)  (1122)
                                         (1131)
                                         (1212)
                                         (1221)
                                         (1311)
                                         (11112)
                                         (11121)
                                         (11211)
                                         (12111)
                                         (111111)
		

Crossrefs

Ranked by A374633 = positions of identical rows in A374629 (sums A374630).
Types of runs (instead of weakly increasing):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374517, ranks A374519.
- For leaders of strictly increasing runs we have A374686, ranks A374685.
- For leaders of weakly decreasing runs we have A374742, ranks A374744.
- For leaders of strictly decreasing runs we have A374760, ranks A374759.
Types of run-leaders (instead of identical):
- For strictly decreasing leaders we appear to have A188920.
- For weakly decreasing leaders we appear to have A189076.
- For distinct leaders we have A374632, ranks A374768.
- For strictly increasing leaders we have A374634.
- For weakly increasing leaders we have A374635.
A003242 counts anti-run compositions.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A374637 counts compositions by sum of leaders of weakly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],SameQ@@First/@Split[#,LessEqual]&]],{n,0,15}]
  • PARI
    C_x(N) = {my(x='x+O('x^N), h=1+sum(i=1,N, 1/(1-x^i)*(x^i+sum(z=1,N-i+1, (x^i/(1-x^i)*(-1+(1/prod(j=i+1,N-i,1-x^j))))^z)))); Vec(h)}
    C_x(40) \\ John Tyler Rascoe, Jul 25 2024

Formula

G.f.: 1 + Sum_{i>0} A(x,i) where A(x,i) = 1/(1-x^i) * (x^i + Sum_{z>0} ( ((x^i)/(1-x^i) * (-1 + Product_{j>i} (1/(1-x^j))))^z )) is the g.f. for compositions of this kind with all leaders equal to i. - John Tyler Rascoe, Jul 25 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 25 2024

A374757 Irregular triangle read by rows where row n lists the leaders of strictly decreasing runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 5, 4, 3, 3, 1, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 4, 1, 3, 1, 2, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 5, 4, 4, 1, 3, 3, 3, 3, 2, 3, 1, 1, 2, 4, 2, 3
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			the 1234567th composition in standard order is (3,2,1,2,2,1,2,5,1,1,1), with strictly decreasing runs ((3,2,1),(2),(2,1),(2),(5,1),(1),(1)), so row 1234567 is (3,2,2,2,5,1,1).
The nonnegative integers, corresponding compositions, and leaders of strictly decreasing runs begin:
    0:      () -> ()        15: (1,1,1,1) -> (1,1,1,1)
    1:     (1) -> (1)       16:       (5) -> (5)
    2:     (2) -> (2)       17:     (4,1) -> (4)
    3:   (1,1) -> (1,1)     18:     (3,2) -> (3)
    4:     (3) -> (3)       19:   (3,1,1) -> (3,1)
    5:   (2,1) -> (2)       20:     (2,3) -> (2,3)
    6:   (1,2) -> (1,2)     21:   (2,2,1) -> (2,2)
    7: (1,1,1) -> (1,1,1)   22:   (2,1,2) -> (2,2)
    8:     (4) -> (4)       23: (2,1,1,1) -> (2,1,1)
    9:   (3,1) -> (3)       24:     (1,4) -> (1,4)
   10:   (2,2) -> (2,2)     25:   (1,3,1) -> (1,3)
   11: (2,1,1) -> (2,1)     26:   (1,2,2) -> (1,2,2)
   12:   (1,3) -> (1,3)     27: (1,2,1,1) -> (1,2,1)
   13: (1,2,1) -> (1,2)     28:   (1,1,3) -> (1,1,3)
   14: (1,1,2) -> (1,1,2)   29: (1,1,2,1) -> (1,1,2)
		

Crossrefs

Row-leaders of nonempty rows are A065120.
Row-lengths are A124769.
The opposite version is A374683, sum A374684, length A124768.
The weak version is A374740, sum A374741, length A124765.
Row-sums are A374758.
Positions of identical rows are A374759 (counted by A374760).
Positions of distinct (strict) rows are A374767 (counted by A374761).
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],Greater],{n,0,100}]

A374698 Numbers k such that the leaders of strictly increasing runs in the k-th composition in standard order are distinct.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 12, 16, 17, 18, 20, 22, 24, 26, 32, 33, 34, 37, 38, 40, 41, 44, 48, 50, 52, 64, 65, 66, 68, 69, 70, 72, 76, 80, 81, 88, 96, 98, 100, 104, 128, 129, 130, 132, 133, 134, 137, 140, 144, 145, 148, 150, 152, 154, 160, 161, 164, 166, 176, 180
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal strictly increasing subsequences of the 212th composition in standard order are ((1,2),(2,3)), with leaders (1,2), so 212 is in the sequence.
The terms together with corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   6: (1,2)
   8: (4)
   9: (3,1)
  12: (1,3)
  16: (5)
  17: (4,1)
  18: (3,2)
  20: (2,3)
  22: (2,1,2)
  24: (1,4)
  26: (1,2,2)
		

Crossrefs

Positions of distinct (strict) rows in A374683.
For identical leaders we have A374685, counted by A374761.
Compositions of this type are counted by A374687.
The opposite version is A374767, counted by A374760.
The weak version is A374768, counted by A374632.
Other types of runs: A374249 (counts A274174), A374638 (counts A374518), A374701 (counts A374743).
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],Less]&]

A374742 Number of integer compositions of n whose leaders of weakly decreasing runs are identical.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 54, 87, 138, 220, 349, 556, 881, 1403, 2229, 3551, 5653, 9019, 14387, 22988, 36739, 58785, 94100, 150765, 241658, 387617, 622002, 998658, 1604032, 2577512, 4143243, 6662520, 10716931, 17243904, 27753518, 44680121, 71947123, 115880662
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,3,2,1,3,3) has maximal weakly decreasing subsequences ((3,1),(3,2,1),(3,3)), with leaders (3,3,3), so is counted under a(16).
The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (32)     (33)
                 (111)  (31)    (41)     (42)
                        (211)   (212)    (51)
                        (1111)  (221)    (222)
                                (311)    (321)
                                (2111)   (411)
                                (11111)  (2112)
                                         (2121)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

Ranked by A374744 = positions of identical rows in A374740, cf. A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374517, ranks A374519.
- For leaders of strictly increasing runs we have A374686, ranks A374685.
- For leaders of weakly increasing runs we have A374631, ranks A374633.
- For leaders of strictly decreasing runs we have A374760, ranks A374759.
Types of run-leaders (instead of identical):
- For strictly decreasing leaders we have A374746.
- For weakly decreasing leaders we have A374747.
- For distinct leaders we have A374743, ranks A374701.
- For weakly increasing leaders we appear to have A188900.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374748 counts compositions by sum of leaders of weakly decreasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],SameQ@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
  • PARI
    B(i) = x^i/(1-x^i) * sum(j=1,i-1, x^j*prod(k=1,j, (1-x^k)^(-1)))
    A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(i=1,N,-1+(1+x^i/(1-x^i))/(1-B(i))))}
    A_x(30) \\ John Tyler Rascoe, Apr 29 2025

Formula

G.f.: 1 + Sum_{i>0} -1 + (1 + x^i/(1 - x^i))/(1 - B(i,x)) where B(i,x) = x^i/(1 - x^i) * Sum_{j=1..i-1} x^j * Product_{k=1..j} (1 - x^k)^(-1). - John Tyler Rascoe, Apr 29 2025

Extensions

a(24)-a(40) from Alois P. Heinz, Jul 26 2024

A374767 Numbers k such that the leaders of strictly decreasing runs in the k-th composition in standard order are distinct.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 24, 25, 32, 33, 34, 35, 37, 38, 40, 41, 44, 48, 49, 50, 52, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 83, 88, 89, 92, 96, 97, 98, 101, 102, 104, 105, 108, 128, 129, 130, 131, 132, 133
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 10000000th composition in standard order is (3,1,4,3,2,1,2,8), with strictly decreasing runs ((3,1),(4,3,2,1),(2),(8)), with leaders (3,4,2,1) so 10000000 is in the sequence.
The terms together with the corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   6: (1,2)
   8: (4)
   9: (3,1)
  11: (2,1,1)
  12: (1,3)
  13: (1,2,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  19: (3,1,1)
  20: (2,3)
  24: (1,4)
  25: (1,3,1)
		

Crossrefs

The opposite version is A374698, counted by A374687.
The weak version is A374701, counted by A374743.
For identical instead of distinct runs we have A374759, counted by A374760.
Compositions of this type are counted by A374761.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],Greater]&]
Previous Showing 31-40 of 117 results. Next