cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 69 results. Next

A374701 Numbers k such that the leaders of weakly decreasing runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

First differs from A335469 in having 150, which corresponds to the composition (3,2,1,2).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly decreasing subsequences of the 1257th composition in standard order are ((3,1,1),(2),(3,1)), with leaders (3,2,3), so 1257 is not in the sequence.
		

Crossrefs

Positions of distinct (strict) rows in A374740, opposite A374629.
Compositions of this type are counted by A374743.
For identical leaders we have A374744, counted by A374742.
Other types of runs and their counts: A374249 (A274174), A374638 (A374518), A374698 (A374687), A374767 (A374761), A374768 (A374632).
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],GreaterEqual]&] (* Gus Wiseman, Jul 24 2024 *)

A375123 Weakly increasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 1, 1, 8, 9, 2, 5, 1, 3, 1, 1, 16, 17, 18, 9, 2, 5, 5, 5, 1, 3, 1, 3, 1, 3, 1, 1, 32, 33, 34, 17, 4, 37, 9, 9, 2, 5, 2, 5, 5, 11, 5, 5, 1, 3, 6, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 64, 65, 66, 33, 68, 69, 17, 17, 4, 9, 18, 37, 9, 19, 9, 9
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of weakly increasing runs of the n-th composition in standard order.
The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with weakly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
		

Crossrefs

Positions of elements of A233564 are A374768, counted by A374632.
Positions of elements of A272919 are A374633, counted by A374631.
Ranks of rows of A374629.
The opposite version is A375124.
The strict version is A375125.
The strict opposite version is A375126.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-sum transformation is A353847.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],LessEqual]],{n,0,100}]

Formula

A000120(a(n)) = A124766(n).
A070939(a(n)) = A374630(n) for n > 0.
A065120(a(n)) = A065120(n).

A374253 Numbers k such that the k-th composition in standard order matches the patterns (1,2,1) or (2,1,2).

Original entry on oeis.org

13, 22, 25, 27, 29, 45, 46, 49, 51, 53, 54, 55, 57, 59, 61, 76, 77, 82, 86, 89, 90, 91, 93, 94, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 115, 117, 118, 119, 121, 123, 125, 141, 148, 150, 153, 155, 156, 157, 162, 165, 166, 173, 174, 177, 178
Offset: 1

Views

Author

Gus Wiseman, Jul 13 2024

Keywords

Comments

Such a composition cannot be strict.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their standard compositions begin:
  13: (1,2,1)
  22: (2,1,2)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  45: (2,1,2,1)
  46: (2,1,1,2)
  49: (1,4,1)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  76: (3,1,3)
  77: (3,1,2,1)
  82: (2,3,2)
  86: (2,2,1,2)
  89: (2,1,3,1)
		

Crossrefs

Permutations of prime indices of this type are counted by A335460.
Compositions of this type are counted by A335548.
The complement is A374249, counted by A274174.
The anti-run case is A374254.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A025047 counts wiggly compositions, ranks A345167.
A066099 lists compositions in standard order.
A124767 counts runs in standard compositions, anti-runs A333381.
A233564 ranks strict compositions, counted by A032020.
A333755 counts compositions by number of runs.
A335454 counts patterns matched by standard compositions.
A335456 counts patterns matched by compositions.
A335462 counts (1,2,1)- and (2,1,2)-matching permutations of prime indices.
A335465 counts minimal patterns avoided by a standard composition.
- A335470 counts (1,2,1)-matching compositions, ranks A335466.
- A335471 counts (1,2,1)-avoiding compositions, ranks A335467.
- A335472 counts (2,1,2)-matching compositions, ranks A335468.
- A335473 counts (2,1,2)-avoiding compositions, ranks A335469.
A373948 encodes run-compression using compositions in standard order.
A373949 counts compositions by run-compressed sum, opposite A373951.
A373953 gives run-compressed sum of standard compositions, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@First/@Split[stc[#]]&]

Formula

Equals A335466 \/ A335468.

A374759 Numbers k such that the leaders of strictly decreasing runs in the k-th composition in standard order are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 15, 16, 17, 18, 21, 22, 31, 32, 33, 34, 36, 37, 42, 45, 63, 64, 65, 66, 68, 69, 73, 76, 85, 86, 90, 127, 128, 129, 130, 132, 133, 136, 137, 146, 148, 153, 170, 173, 181, 182
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The 18789th composition in standard order is (3,3,2,1,3,2,1), with strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so 18789 is in the sequence.
The terms together with the corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   7: (1,1,1)
   8: (4)
   9: (3,1)
  10: (2,2)
  15: (1,1,1,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  21: (2,2,1)
  22: (2,1,2)
  31: (1,1,1,1,1)
  32: (6)
  33: (5,1)
  34: (4,2)
  36: (3,3)
  37: (3,2,1)
		

Crossrefs

For leaders of anti-runs we have A374519 (counted by A374517).
For leaders of weakly increasing runs we have A374633, counted by A374631.
The opposite version is A374685 (counted by A374686).
The weak version is A374744.
Compositions of this type are counted by A374760.
For distinct instead of identical runs we have A374767 (counted by A374761).
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],Greater]&]

A386583 Triangle read by rows where T(n,k) is the number of length k integer partitions of n having a permutation without any adjacent equal parts (separable).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 1, 3, 4, 1, 1, 0, 0, 0, 1, 3, 5, 3, 2, 0, 0, 0, 0, 1, 4, 6, 4, 3, 1, 0, 0, 0, 0, 1, 4, 8, 6, 5, 1, 1, 0, 0, 0, 0, 1, 5, 10, 8, 8, 3, 2, 0, 0, 0, 0, 0, 1, 5, 11, 12, 11, 5, 3, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2025

Keywords

Comments

A multiset is separable iff it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
Separable partitions (A325534) are different from partitions of separable type (A386585).
Are the rows all unimodal?
Some rows are not unimodal: T(200, k=26..30) = 149371873744, 153304102463, 152360653274, 152412869411, 147228477998. - Alois P. Heinz, Aug 04 2025

Examples

			Row n = 9 counts the following partitions:
  (9)  (5,4)  (4,3,2)  (3,3,2,1)  (3,2,2,1,1)  (2,2,2,1,1,1)
       (6,3)  (4,4,1)  (4,2,2,1)  (3,3,1,1,1)
       (7,2)  (5,2,2)  (4,3,1,1)  (4,2,1,1,1)
       (8,1)  (5,3,1)  (5,2,1,1)
              (6,2,1)
              (7,1,1)
Triangle begins:
  1
  0  1
  0  1  0
  0  1  1  0
  0  1  1  1  0
  0  1  2  2  0  0
  0  1  2  2  1  0  0
  0  1  3  4  1  1  0  0
  0  1  3  5  3  2  0  0  0
  0  1  4  6  4  3  1  0  0  0
  0  1  4  8  6  5  1  1  0  0  0
  0  1  5 10  8  8  3  2  0  0  0  0
  0  1  5 11 12 11  5  3  1  0  0  0  0
  0  1  6 14 14 15  8  6  1  1  0  0  0  0
  0  1  6 16 19 20 11  9  3  2  0  0  0  0  0
  0  1  7 18 23 27 17 14  5  3  1  0  0  0  0  0
  0  1  7 21 29 34 23 20  9  6  1  1  0  0  0  0  0
  0  1  8 24 34 43 32 28 13 10  3  2  0  0  0  0  0  0
  0  1  8 26 42 53 42 38 20 15  5  3  1  0  0  0  0  0  0
  0  1  9 30 48 66 55 52 28 23  9  6  1  1  0  0  0  0  0  0
  0  1  9 33 58 80 70 68 41 33 14 10  3  2  0  0  0  0  0  0  0
  ...
		

Crossrefs

Separable case of A008284.
Row sums are A325534, ranked by A335433.
For inseparable instead separable we have A386584, sums A325535, ranks A335448.
For separable type instead of separable we have A386585, sums A336106, ranks A335127.
For inseparable type instead of separable we have A386586, sums A025065, ranks A335126.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A124762 gives inseparability of standard compositions, separability A333382.
A239455 counts Look-and-Say partitions, ranks A351294.
A336103 counts normal separable multisets, inseparable A336102.
A351293 counts non-Look-and-Say partitions, ranks A351295.
A386633 counts separable set partitions, row sums of A386635.
A386634 counts inseparable set partitions, row sums of A386636.

Programs

  • Mathematica
    sepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]!={};
    Table[Length[Select[IntegerPartitions[n,{k}],sepQ]],{n,0,15},{k,0,n}]

A069321 Stirling transform of A001563: a(0) = 1 and a(n) = Sum_{k=1..n} Stirling2(n,k)*k*k! for n >= 1.

Original entry on oeis.org

1, 1, 5, 31, 233, 2071, 21305, 249271, 3270713, 47580151, 760192505, 13234467511, 249383390393, 5057242311031, 109820924003705, 2542685745501751, 62527556173577273, 1627581948113854711, 44708026328035782905, 1292443104462527895991, 39223568601129844839353
Offset: 0

Views

Author

Karol A. Penson, Mar 14 2002

Keywords

Comments

The number of compatible bipartitions of a set of cardinality n for which at least one subset is not underlined. E.g., for n=2 there are 5 such bipartitions: {1 2}, {1}{2}, {2}{1}, {1}{2}, {2}{1}. A005649 is the number of bipartitions of a set of cardinality n. A000670 is the number of bipartitions of a set of cardinality n with none of the subsets underlined. - Kyle Petersen, Mar 31 2005
a(n) is the cardinality of the image set summed over "all surjections". All surjections means: onto functions f:{1, 2, ..., n} -> {1, 2, ..., k} for every k, 1 <= k <= n. a(n) = Sum_{k=1..n} A019538(n, k)*k. - Geoffrey Critzer, Nov 12 2012
From Gus Wiseman, Jan 15 2022: (Start)
For n > 1, also the number of finite sequences of length n + 1 covering an initial interval of positive integers with at least two adjacent equal parts, or non-anti-run patterns, ranked by the intersection of A348612 and A333217. The complement is counted by A005649. For example, the a(3) = 31 patterns, grouped by sum, are:
(1111) (1222) (1122) (1112) (1233) (1223)
(2122) (1221) (1121) (1332) (1322)
(2212) (2112) (1211) (2133) (2213)
(2221) (2211) (2111) (2331) (2231)
(1123) (3312) (3122)
(1132) (3321) (3221)
(2113)
(2311)
(3112)
(3211)
Also the number of ordered set partitions of {1,...,n + 1} with two successive vertices together in some block.
(End)

Crossrefs

The complement is counted by A005649.
A version for permutations of prime indices is A336107.
A version for factorizations is A348616.
Dominated (n > 1) by A350252, complement A345194, compositions A345192.
A000670 = patterns, ranked by A333217.
A001250 = alternating permutations, complement A348615.
A003242 = anti-run compositions, ranked by A333489.
A019536 = necklace patterns.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A261983 = not-anti-run compositions, ranked by A348612.
A333381 = anti-runs of standard compositions.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> `if`(n=0, 2, b(n+1)-b(n))/2:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 02 2018
  • Mathematica
    max = 20; t = Sum[n^(n - 1)x^n/n!, {n, 1, max}]; Range[0, max]!CoefficientList[Series[D[1/(1 - y(Exp[x] - 1)), y] /. y -> 1, {x, 0, max}], x] (* Geoffrey Critzer, Nov 12 2012 *)
    Prepend[Table[Sum[StirlingS2[n, k]*k*k!, {k, n}], {n, 18}], 1] (* Michael De Vlieger, Jan 03 2016 *)
    a[n_] := (PolyLog[-n-1, 1/2] - PolyLog[-n, 1/2])/4; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2016 *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MemberQ[Differences[#],0]&]],{n,0,8}] (* Gus Wiseman, Jan 15 2022 *)
  • PARI
    {a(n)=polcoeff(1+sum(m=1, n, (2*m-1)!/(m-1)!*x^m/prod(k=1, m, 1+(m+k-1)*x+x*O(x^n))), n)} \\ Paul D. Hanna, Oct 28 2013

Formula

Representation as an infinite series: a(0) = 1 and a(n) = Sum_{k>=2} (k^n*(k-1)/(2^k))/4 for n >= 1. This is a Dobinski-type summation formula.
E.g.f.: (exp(x) - 1)/((2 - exp(x))^2).
a(n) = (1/2)*(A000670(n+1) - A000670(n)).
O.g.f.: 1 + Sum_{n >= 1} (2*n-1)!/(n-1)! * x^n / (Product_{k=1..n} (1 + (n + k - 1)*x)). - Paul D. Hanna, Oct 28 2013
a(n) = (A000629(n+1) - A000629(n))/4. - Benoit Cloitre, Oct 20 2002
a(n) = A232472(n-1)/2. - Vincenzo Librandi, Jan 03 2016
a(n) ~ n! * n / (4 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n > 0) = A000607(n + 1) - A005649(n). - Gus Wiseman, Jan 15 2022

A374744 Numbers k such that the leaders of weakly decreasing runs in the k-th composition in standard order (A066099) are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 22, 23, 31, 32, 33, 34, 35, 36, 37, 39, 42, 43, 45, 46, 47, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 79, 85, 86, 87, 90, 91, 93, 94, 95, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

The leaders of weakly decreasing runs in a sequence are obtained by splitting into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with the corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   7: (1,1,1)
   8: (4)
   9: (3,1)
  10: (2,2)
  11: (2,1,1)
  15: (1,1,1,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  19: (3,1,1)
  21: (2,2,1)
  22: (2,1,2)
  23: (2,1,1,1)
  31: (1,1,1,1,1)
		

Crossrefs

Other types of runs and their counts: A272919 (A000005), A374519 (A374517), A374685 (A374686), A374759 (A374760).
The opposite is A374633, counted by A374631.
For distinct (instead of identical) leaders we have A374701, count A374743.
Positions of constant rows in A374740, opposite A374629, cf. A374630.
Compositions of this type are counted by A374742.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A374748 counts compositions by sum of leaders of weakly decreasing runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],GreaterEqual]&]

A386584 Triangle read by rows where T(n,k) is the number of length k>=0 integer partitions of n having no permutation without any adjacent equal parts (inseparable).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 2, 1, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 1, 1, 0, 0, 1, 0, 3, 2, 4, 2, 2, 1, 1, 0, 0, 0, 0, 3, 2, 4, 3, 3, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 05 2025

Keywords

Comments

A multiset is inseparable iff it has no anti-run permutations, where an anti-run is a sequence without any adjacent equal parts. Inseparable partitions (A325535) are different from partitions of inseparable type (A386586).

Examples

			Row n = 10 counts the following partitions:
  . . 55 . 7111 61111 511111 4111111 31111111 211111111 1111111111
           4222 22222 421111 3211111 22111111
           3331       331111
                      222211
Triangle begins:
  0
  0  0
  0  0  1
  0  0  0  1
  0  0  1  0  1
  0  0  0  0  1  1
  0  0  1  1  1  1  1
  0  0  0  0  2  1  1  1
  0  0  1  0  2  1  2  1  1
  0  0  0  1  2  2  2  2  1  1
  0  0  1  0  3  2  4  2  2  1  1
  0  0  0  0  3  2  4  3  3  2  1  1
  0  0  1  1  3  2  6  4  4  3  2  1  1
  0  0  0  0  4  3  6  5  6  4  3  2  1  1
  0  0  1  0  4  3  9  6  8  5  5  3  2  1  1
  0  0  0  1  4  3  9  7 10  8  6  5  3  2  1  1
  0  0  1  0  5  3 12  8 13  9 10  6  5  3  2  1  1
  0  0  0  0  5  4 12 10 16 12 12  9  7  5  3  2  1  1
  0  0  1  1  5  4 16 11 20 15 17 12 10  7  5  3  2  1  1
  0  0  0  0  6  4 16 13 24 18 21 16 14 10  7  5  3  2  1  1
  0  0  1  0  6  4 20 14 29 21 28 20 19 13 11  7  5  3  2  1  1
		

Crossrefs

Inseparable case of A008284 or A072233.
Row sums are A325535, ranked by A335448.
For separable instead of inseparable we have A386583, sums A325534, ranks A335433.
For separable type we have A386585, sums A336106, ranks A335127.
For inseparable type we have A386586, sums A025065, ranks A335126.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A124762 gives inseparability of standard compositions, separability A333382.
A336103 counts normal separable multisets, inseparable A336102.
A386633 counts separable set partitions, row sums of A386635.
A386634 counts inseparable set partitions, row sums of A386636.

Programs

  • Mathematica
    insepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]=={};
    Table[Length[Select[IntegerPartitions[n,{k}],insepQ]],{n,0,15},{k,0,n}]

Formula

T(n,k) = A072233(n,k) - A386583(n,k).

A375124 Weakly decreasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 1, 4, 2, 6, 1, 8, 4, 2, 2, 12, 6, 6, 1, 16, 8, 4, 4, 20, 2, 10, 2, 24, 12, 6, 6, 12, 6, 6, 1, 32, 16, 8, 8, 4, 4, 18, 4, 40, 20, 2, 2, 20, 10, 10, 2, 48, 24, 12, 12, 52, 6, 26, 6, 24, 12, 6, 6, 12, 6, 6, 1, 64, 32, 16, 16, 8, 8, 34, 8, 72, 4, 4, 4, 36
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of weakly decreasing runs in the n-th composition in standard order.
The leaders of weakly decreasing runs in a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with weakly decreasing runs ((1),(3,2,1),(2,1)), with leaders (1,3,2). This is the 50th composition in standard order, so a(813) = 50.
		

Crossrefs

Positions of elements of A233564 are A374701, counted by A374743.
Positions of elements of A272919 are A374744, counted by A374742.
Ranks of rows of A374740.
The opposite version is A375123.
The strict version is A375126.
The strict opposite version is A375125.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],GreaterEqual]],{n,0,100}]

Formula

A000120(a(n)) = A124765(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374741(n).

A375125 Strictly increasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1, 7, 8, 9, 10, 11, 1, 3, 3, 15, 16, 17, 18, 19, 2, 21, 5, 23, 1, 3, 6, 7, 3, 7, 7, 31, 32, 33, 34, 35, 36, 37, 9, 39, 2, 5, 42, 43, 5, 11, 11, 47, 1, 3, 6, 7, 1, 13, 3, 15, 3, 7, 14, 15, 7, 15, 15, 63, 64, 65, 66, 67, 68, 69, 17, 71, 4, 73
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of strictly increasing runs in the n-th composition in standard order.
The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with strictly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
		

Crossrefs

Positions of elements of A233564 are A374698, counted by A374687.
Positions of elements of A272919 are A374685, counted by A374686.
Ranks of rows of A374683.
The weak version is A375123.
The weak opposite version is A375124.
The opposite version is A375126.
Other transformations: A375127, A373948.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],Less]],{n,0,100}]

Formula

A000120(a(n)) = A124768(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374684(n).
Previous Showing 31-40 of 69 results. Next