cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A335524 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (2,2,1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A001710 (by length).
Permutations of prime indices avoiding this pattern are counted by A335450.
These compositions are counted by A335473 (by sum).
The complement A335477 is the matching version.
The (1,2,2)-avoiding version is A335525.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,x_,_,y_,_}/;x>y]&]

A335525 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (1,2,2).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A001710 (by length).
Permutations of prime indices avoiding this pattern are counted by A335450.
These compositions are counted by A335473 (by sum).
The complement A335475 is the matching version.
The (2,2,1)-avoiding version is A335524.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,y_,_,y_,_}/;x
    				

A232580 Number of binary sequences of length n that contain at least one contiguous subsequence 011.

Original entry on oeis.org

0, 0, 0, 1, 4, 12, 31, 74, 168, 369, 792, 1672, 3487, 7206, 14788, 30185, 61356, 124308, 251199, 506578, 1019920, 2050785, 4119280, 8267216, 16580799, 33236622, 66594636, 133385689, 267089188, 534692604, 1070217247, 2141780762, 4285739832, 8575004241
Offset: 0

Views

Author

Geoffrey Critzer, Nov 26 2013

Keywords

Comments

From Gus Wiseman, Jun 26 2022: (Start)
Also the number of integer compositions of n + 1 with an even part other than the first or last. For example, the a(3) = 1 through a(5) = 12 compositions are:
(121) (122) (123)
(221) (141)
(1121) (222)
(1211) (321)
(1122)
(1212)
(1221)
(2121)
(2211)
(11121)
(11211)
(12111)
The odd version is A274230.
(End)

Examples

			a(4) = 4 because we have: 0011, 0110, 0111, 1011.
		

Crossrefs

The complement is counted by A000071(n) = A001911(n) + 1.
For the contiguous pattern (1,1) or (0,0) we have A000225.
For the contiguous pattern (1,0,1) or (0,1,0) we have A000253.
For the contiguous pattern (1,0) or (0,1) we have A000295.
Numbers whose binary expansion is of this type are A004750.
For the contiguous pattern (1,1,1) or (0,0,0) we have A050231.
The not necessarily contiguous version is A324172.

Programs

  • Mathematica
    nn=40;a=x/(1-x);CoefficientList[Series[a^2 x/(1-a x)/(1-2x),{x,0,nn}],x]
    (* second program *)
    Table[Length[Select[Tuples[{0,1},n],MatchQ[#,{_,0,1,1,_}]&]],{n,0,10}] (* Gus Wiseman, Jun 26 2022 *)
  • PARI
    concat(vector(3), Vec(x^3/(-2*x^4+x^3+4*x^2-4*x+1) + O(x^40))) \\ Colin Barker, Nov 03 2016

Formula

O.g.f.: x^3/( (1-x)^2*(1-x^2/(1-x))*(1-2x) ).
a(n) ~ 2^n.
From Colin Barker, Nov 03 2016: (Start)
a(n) = (1 + 2^n - (2^(-n)*((1-sqrt(5))^n*(-2+sqrt(5)) + (1+sqrt(5))^n*(2+sqrt(5))))/sqrt(5)).
a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4) for n > 3. (End)
a(n) = 2^n - Fibonacci(n+3) + 1. - Ehren Metcalfe, Dec 27 2018
E.g.f.: 2*exp(x/2)*(5*exp(x)*cosh(x/2) - 5*cosh(sqrt(5)*x/2) - 2*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Apr 06 2022

A335488 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,1).

Original entry on oeis.org

3, 7, 10, 11, 13, 14, 15, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 39, 42, 43, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 99, 100, 101
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with some part appearing more than once, or non-strict compositions.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  19: (3,1,1)
  21: (2,2,1)
  22: (2,1,2)
  23: (2,1,1,1)
  25: (1,3,1)
  26: (1,2,2)
  27: (1,2,1,1)
  28: (1,1,3)
		

Crossrefs

The complement A233564 is the avoiding version.
Patterns matching this pattern are counted by A019472 (by length).
Permutations of prime indices matching this pattern are counted by A335487.
These compositions are counted by A261982 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
The (1,1,1)-matching case is A335512.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,x_,_}]&]

A335508 Number of patterns of length n matching the pattern (1,1,1).

Original entry on oeis.org

0, 0, 0, 1, 9, 91, 993, 12013, 160275, 2347141, 37496163, 649660573, 12142311195, 243626199181, 5224710549243, 119294328993853, 2889836999693355, 74037381200415901, 2000383612949821323, 56850708386783835133, 1695491518035158123115, 52949018580275965241821
Offset: 0

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(3) = 1 through a(4) = 9 patterns:
  (1,1,1)  (1,1,1,1)
           (1,1,1,2)
           (1,1,2,1)
           (1,2,1,1)
           (1,2,2,2)
           (2,1,1,1)
           (2,1,2,2)
           (2,2,1,2)
           (2,2,2,1)
		

Crossrefs

The complement A080599 is the avoiding version.
Permutations of prime indices matching this pattern are counted by A335510.
Compositions matching this pattern are counted by A335455 and ranked by A335512.
Patterns are counted by A000670 and ranked by A333217.
Patterns matching the pattern (1,1) are counted by A019472.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Patterns matching (1,2,3) are counted by A335515.
Cf. A276922.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    a:= n-> b(n$2)-b(n, 2):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jan 28 2024
  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,x_,_,x_,_}]&]],{n,0,6}]

Formula

a(n) = Sum_{k=3..n} A276922(n,k). - Alois P. Heinz, Jan 28 2024
a(n) = A000670(n) - A080599(n). - Andrew Howroyd, Jan 28 2024

Extensions

a(9)-a(21) from Alois P. Heinz, Jan 28 2024

A335512 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,1,1).

Original entry on oeis.org

7, 15, 23, 27, 29, 30, 31, 39, 42, 47, 51, 55, 57, 59, 60, 61, 62, 63, 71, 79, 85, 86, 87, 90, 91, 93, 94, 95, 99, 103, 106, 107, 109, 110, 111, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 135, 143, 151, 155, 157, 158, 159, 167, 170, 171
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with some part appearing more than twice.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   7: (1,1,1)
  15: (1,1,1,1)
  23: (2,1,1,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
  39: (3,1,1,1)
  42: (2,2,2)
  47: (2,1,1,1,1)
  51: (1,3,1,1)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  60: (1,1,1,3)
		

Crossrefs

The complement A335513 is the avoiding version.
Patterns matching this pattern are counted by A335508 (by length).
Permutations of prime indices matching this pattern are counted by A335510.
These compositions are counted by A335455 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
The (1,1)-matching version is A335488.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,x_,_,x_,_}]&]

A335474 Number of nonempty normal patterns contiguously matched by the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 4, 2, 4, 4, 4, 1, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 7, 4, 7, 6, 5, 1, 2, 2, 4, 2, 3, 4, 6, 2, 4, 3, 6, 4, 6, 7, 8, 2, 4, 4, 7, 3, 7, 6, 10, 4, 7, 6, 10, 6, 10, 8, 6, 1, 2, 2, 4, 2, 3, 4, 6, 2, 4, 4, 6, 4, 6, 7, 8, 2, 4, 4, 7, 4, 6
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) patterns for n = 32, 80, 133, 290, 305, 329, 436 are:
      (1)  (1)   (1)    (1)    (1)     (1)     (1)
           (12)  (21)   (12)   (12)    (11)    (12)
                 (321)  (21)   (21)    (12)    (21)
                        (231)  (121)   (21)    (121)
                               (213)   (122)   (123)
                               (2131)  (221)   (212)
                                       (2331)  (1212)
                                               (2123)
                                               (12123)
		

Crossrefs

The version for Heinz numbers of partitions is A335516(n) - 1.
The non-contiguous version is A335454(n) - 1.
The version allowing empty patterns is A335458.
Patterns are counted by A000670 and ranked by A333217.
The n-th composition has A124771(n) distinct consecutive subsequences.
Knapsack compositions are counted by A325676 and ranked by A333223.
The n-th composition has A334299(n) distinct subsequences.
Minimal avoided patterns are counted by A335465.
Patterns matched by prime indices are counted by A335549.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Length[Union[mstype/@ReplaceList[stc[n],{_,s__,_}:>{s}]]],{n,0,100}]

Formula

a(n) = A335458(n) - 1.

A335475 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,2,2).

Original entry on oeis.org

26, 53, 54, 58, 90, 100, 106, 107, 109, 110, 117, 118, 122, 154, 164, 181, 182, 186, 201, 202, 204, 210, 212, 213, 214, 215, 218, 219, 221, 222, 228, 234, 235, 237, 238, 245, 246, 250, 282, 309, 310, 314, 329, 332, 346, 356, 362, 363, 365, 366, 373, 374, 378
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   26: (1,2,2)
   53: (1,2,2,1)
   54: (1,2,1,2)
   58: (1,1,2,2)
   90: (2,1,2,2)
  100: (1,3,3)
  106: (1,2,2,2)
  107: (1,2,2,1,1)
  109: (1,2,1,2,1)
  110: (1,2,1,1,2)
  117: (1,1,2,2,1)
  118: (1,1,2,1,2)
  122: (1,1,1,2,2)
  154: (3,1,2,2)
  164: (2,3,3)
		

Crossrefs

The complement A335525 is the avoiding version.
The (2,2,1)-matching version is A335477.
Patterns matching this pattern are counted by A335509 (by length).
Permutations of prime indices matching this pattern are counted by A335453.
These compositions are counted by A335472 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,y_,_}/;x
    				

A335513 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (1,1,1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 58, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 88, 89
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with no part appearing more than twice.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   0: ()         17: (4,1)      37: (3,2,1)
   1: (1)        18: (3,2)      38: (3,1,2)
   2: (2)        19: (3,1,1)    40: (2,4)
   3: (1,1)      20: (2,3)      41: (2,3,1)
   4: (3)        21: (2,2,1)    43: (2,2,1,1)
   5: (2,1)      22: (2,1,2)    44: (2,1,3)
   6: (1,2)      24: (1,4)      45: (2,1,2,1)
   8: (4)        25: (1,3,1)    46: (2,1,1,2)
   9: (3,1)      26: (1,2,2)    48: (1,5)
  10: (2,2)      28: (1,1,3)    49: (1,4,1)
  11: (2,1,1)    32: (6)        50: (1,3,2)
  12: (1,3)      33: (5,1)      52: (1,2,3)
  13: (1,2,1)    34: (4,2)      53: (1,2,2,1)
  14: (1,1,2)    35: (4,1,1)    54: (1,2,1,2)
  16: (5)        36: (3,3)      56: (1,1,4)
		

Crossrefs

These compositions are counted by A232432 (by sum).
The (1,1)-avoiding version is A233564.
The complement A335512 is the matching version.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Patterns avoiding (1,1,1) are counted by A080599 (by length).
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Permutations of prime indices avoiding (1,1,1) are counted by A335511.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,x_,_,x_,_}]&]

A335837 Number of normal patterns matched by integer partitions of n.

Original entry on oeis.org

1, 2, 5, 9, 18, 31, 54, 89, 146, 228, 358, 545, 821, 1219, 1795, 2596, 3741, 5323, 7521, 10534, 14659, 20232, 27788, 37897, 51410, 69347, 93111, 124348, 165378, 218924, 288646, 379021, 495864, 646272, 839490, 1086693, 1402268, 1803786, 2313498, 2958530, 3773093
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2020

Keywords

Comments

We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(0) = 1 through a(4) = 18  pairs of a partition with a matched pattern:
  ()/()  (1)/()   (2)/()     (3)/()       (4)/()
         (1)/(1)  (2)/(1)    (3)/(1)      (4)/(1)
                  (11)/()    (21)/()      (31)/()
                  (11)/(1)   (21)/(1)     (31)/(1)
                  (11)/(11)  (21)/(21)    (31)/(21)
                             (111)/()     (22)/()
                             (111)/(1)    (22)/(1)
                             (111)/(11)   (22)/(11)
                             (111)/(111)  (211)/()
                                          (211)/(1)
                                          (211)/(11)
                                          (211)/(21)
                                          (211)/(211)
                                          (1111)/()
                                          (1111)/(1)
                                          (1111)/(11)
                                          (1111)/(111)
                                          (1111)/(1111)
		

Crossrefs

The version for compositions in standard order is A335454.
The version for compositions is A335456.
The version for Heinz numbers of partitions is A335549.
The contiguous case is A335838.
Patterns are counted by A000670 and ranked by A333217.
Patterns contiguously matched by prime indices are A335516.
Contiguous divisors are counted by A335519.
Minimal patterns avoided by prime indices are counted by A335550.

Programs

  • Mathematica
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Sum[Length[Union[mstype/@Subsets[y]]],{y,IntegerPartitions[n]}],{n,0,8}]
  • PARI
    lista(n) = {
      my(v=vector(n+1,i,1+x*O(x^n)));
      for(k=1,n,
        v=vector(n\(k+1)+1,i,
            (1-x^(i*k))/(1-x^k)*v[i] + sum(j=i,n\k,x^(j*k)*v[j+1]) +
            x^(k*i)/(1-x^k)^2*v[1] ) );
      Vec(v[1]) } \\ Christian Sievers, May 08 2025

Extensions

a(18) corrected by and a(19)-a(22) from Jinyuan Wang, Jun 27 2020
More terms from Christian Sievers, May 08 2025
Previous Showing 21-30 of 35 results. Next