A365466 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336466(i) = A336466(j) and A336466(A163511(i)) = A336466(A163511(j)) for all i, j >= 1, where A336466 is fully multiplicative with a(p) = oddpart(p-1) for any prime p.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 4, 1, 1, 1, 5, 1, 2, 3, 6, 1, 1, 2, 4, 2, 7, 4, 8, 1, 3, 1, 2, 1, 5, 5, 9, 1, 3, 2, 10, 3, 11, 6, 12, 1, 5, 1, 4, 2, 13, 4, 14, 2, 15, 7, 16, 4, 8, 8, 17, 1, 2, 3, 18, 1, 19, 2, 20, 1, 5, 5, 21, 5, 22, 9, 23, 1, 1, 3, 24, 2, 11, 10, 25, 3, 6, 11, 26, 6, 27, 12, 28, 1, 2, 5
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A000265(n) = (n>>valuation(n,2)); A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p)); A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); }; A365466aux(n) = [A336466(n), A336466(A163511(n))]; v365466 = rgs_transform(vector(up_to,n,A365466aux(n))); A365466(n) = v365466[n];
Comments