A340011
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of the j-th row of triangle A127093 but with every term multiplied by A000041(m-1), where j = n - m + 1 and 1 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 1, 0, 3, 1, 2, 2, 1, 2, 0, 4, 1, 0, 3, 2, 4, 3, 1, 0, 0, 0, 5, 1, 2, 0, 4, 2, 0, 6, 3, 6, 5, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 5, 2, 4, 0, 8, 3, 0, 9, 5, 10, 7, 1, 0, 0, 0, 0, 0, 7, 1, 2, 3, 0, 0, 6, 2, 0, 0, 0, 10, 3, 6, 0, 12, 5, 0, 15, 7, 14, 11, 1, 2, 0, 4, 0, 0, 0, 8
Offset: 1
Triangle begins:
[1];
[1, 2], [1];
[1, 0, 3], [1, 2], [2];
[1, 2, 0, 4], [1, 0, 3], [2, 4], [3];
[1, 0, 0, 0, 5], [1, 2, 0, 4], [2, 0, 6], [3, 6], [5];
[...
Row sums give A066186.
Written as an irregular tetrahedron the first five slices are:
--
1;
-----
1, 2,
1;
--------
1, 0, 3,
1, 2,
2;
-----------
1, 2, 0, 4,
1, 0, 3,
2, 4,
3;
--------------
1, 0, 0, 0, 5,
1, 2, 0, 4,
2, 0, 6,
3, 6,
5;
--------------
Row sums give A339106.
The following table formed by four zones shows the correspondence between divisor and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| |
| I | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| N | | * | * * | * * * | * * * * | * * * * * |
| K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| |---------|-----|-------|---------|-----------|-------------|
| D | A127093 | | | 1 | 1 2 | 1 0 3 |
| I | A127093 | | | 1 | 1 2 | 1 0 3 |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A127093 | | | | 1 | 1 2 |
| S | A127093 | | | | 1 | 1 2 |
| O | A127093 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
| C | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| O | - | | | 2 | 2 4 | 2 0 6 |
| N | - | | | | 3 | 3 6 |
| D | - | | | | | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
This lower zone of the table is a condensed version of the "divisors" zone.
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A221649,
A221650,
A237593,
A245095,
A302246,
A302247,
A336811,
A336812,
A337209,
A338156,
A339106,
A339258,
A339278,
A339304,
A340031,
A340032,
A340035,
A340061.
A340056
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of the divisors of j multiplied by A000041(m-1), where j = n - m + 1 and 1 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 4, 1, 3, 2, 4, 3, 1, 5, 1, 2, 4, 2, 6, 3, 6, 5, 1, 2, 3, 6, 1, 5, 2, 4, 8, 3, 9, 5, 10, 7, 1, 7, 1, 2, 3, 6, 2, 10, 3, 6, 12, 5, 15, 7, 14, 11, 1, 2, 4, 8, 1, 7, 2, 4, 6, 12, 3, 15, 5, 10, 20, 7, 21, 11, 22, 15, 1, 3, 9, 1, 2, 4, 8, 2, 14, 3, 6, 9, 18, 5
Offset: 1
Triangle begins:
[1];
[1, 2], [1];
[1, 3], [1, 2], [2];
[1, 2, 4], [1, 3], [2, 4], [3];
[1, 5], [1, 2, 4], [2, 6], [3, 6], [5];
[...
The row sums of triangle give A066186.
Written as an irregular tetrahedron the first five slices are:
1;
-----
1, 2,
1;
-----
1, 3,
1, 2,
2;
--------
1, 2, 4,
1, 3,
2, 4,
3;
--------
1, 5,
1, 2, 4,
2, 6,
3, 6,
5;
--------
The row sums of tetrahedron give A339106.
The slices of the tetrahedron appear in the following table formed by four zones shows the correspondence between divisor and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| |
| I | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| N | | * | * * | * * * | * * * * | * * * * * |
| K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
| |---------|-----|-------|---------|-----------|-------------|
| | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| |---------|-----|-------|---------|-----------|-------------|
| D | A027750 | | | 1 | 1 2 | 1 3 |
| I | A027750 | | | 1 | 1 2 | 1 3 |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A027750 | | | | 1 | 1 2 |
| S | A027750 | | | | 1 | 1 2 |
| O | A027750 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
| C | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| O | - | | | 2 | 2 4 | 2 6 |
| N | - | | | | 3 | 3 6 |
| D | - | | | | | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
The lower zone is a condensed version of the "divisors" zone.
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A245095,
A221649,
A221650,
A237593,
A302246,
A302247,
A336811,
A336812,
A337209,
A338156,
A339106,
A339258,
A339278,
A339304,
A340061.
A345023
a(n) is the surface area of the symmetric tower described in A221529 which is a polycube whose successive terraces are the symmetric representation of sigma A000203(i) (from i = 1 to n) starting from the top and the levels of these terraces are the partition numbers A000041(h-1) (from h = 1 to n) starting from the base.
Original entry on oeis.org
6, 16, 32, 58, 90, 142, 202, 292, 406, 562, 754, 1034, 1370, 1822, 2410, 3176, 4136, 5402, 6982, 9026, 11598, 14838, 18894, 24034, 30396, 38312, 48136, 60288, 75220, 93624, 116104, 143598, 177090, 217770, 267106, 326820, 398804, 485472, 589644, 714564, 864000, 1042524, 1255308
Offset: 1
For n = 7 we can see below some views of two associated polycubes called "prism of partitions" and "tower". Both objects contains the same number of cubes (that property is also valid for n >= 1).
_ _ _ _ _ _ _
|_ _ _ _ | 7
|_ _ _ _|_ | 4 3
|_ _ _ | | 5 2
|_ _ _|_ _|_ | 3 2 2 _
|_ _ _ | | 6 1 1 | |
|_ _ _|_ | | 3 3 1 1 | |
|_ _ | | | 4 2 1 1 | |
|_ _|_ _|_ | | 2 2 2 1 1 _|_|
|_ _ _ | | | 5 1 1 1 1 | |
|_ _ _|_ | | | 3 2 1 1 1 1 _|_ _|
|_ _ | | | | 4 1 1 1 1 1 1 | | |
|_ _|_ | | | | 2 2 1 1 1 1 1 1 _|_|_ _|
|_ _ | | | | | 3 1 1 1 1 1 1 1 1 _| |_ _ _|
|_ | | | | | | 2 1 1 1 1 1 1 1 1 1 1 _ _|_ _|_ _ _|
|_|_|_|_|_|_|_| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |_ _|_|_ _ _ _|
.
Figure 1. Figure 2. Figure 3. Figure 4.
Front view of the Partitions Position Lateral view
prism of partitions. of 7. of the 1's. of the tower.
.
.
_ _ _ _ _ _ _
| | | | | |_| 1
| | | |_|_ _| 2
| |_|_ |_ _| 3
|_ _ |_ _ _| 4
|_ |_ _ _| 5
| | 6
|_ _ _ _| 7
.
Figure 5.
Top view
of the tower.
.
Figure 1 is a two-dimensional diagram of the partitions of 7. The area of the diagram is A066186(7) = 105. Note that the diagram can be interpreted also as the front view of a right prism whose volumen is 1*7*A000041(7) = 1*7*15 = 105, equaling the volume of the tower that appears in the figures 4 and 5.
Figure 2 shows the partitions of 7 in accordance with the diagram.
Note that the shape and the area of the lateral view of the tower are the same as the shape and the area where the 1's are located in the diagram of partitions, see the figures 3 and 4. In this case the mentioned area equals A000070(7-1) = 30.
The connection between these two objects is a representation of the correspondence divisor/part described in A338156. See also A336812.
Cf.
A000041,
A000070,
A000203,
A024916,
A066186,
A176206,
A196020,
A221529,
A236104,
A237593,
A244050,
A245092,
A327329,
A328366,
A336811,
A336812,
A338156.
-
Accumulate @ Table[4 * PartitionsP[k-1] + 2 * DivisorSigma[1, k], {k, 1, 50}] (* Amiram Eldar, Jul 14 2021 *)
A206435
Total sum of odd parts in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 5, 3, 13, 13, 29, 29, 66, 70, 126, 146, 241, 287, 450, 526, 791, 963, 1360, 1660, 2312, 2810, 3799, 4649, 6158, 7528, 9824, 11962, 15393, 18773, 23804, 28932, 36413, 44093, 54953, 66419, 82085, 98929, 121469, 145865, 177983, 213241, 258585, 308861
Offset: 1
Cf.
A000593,
A002865,
A135010,
A138121,
A138879,
A206433,
A206434,
A206436,
A207378,
A336811,
A336812.
-
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<1 then [0, 0]
else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
[g[1]+h[1], g[2]+h[2] +(i mod 2)*h[1]*i]
fi
end:
a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]):
seq(a(n), n=1..60); # Alois P. Heinz, Mar 16 2012
-
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i > n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
A206436
Total sum of even parts in the last section of the set of partitions of n.
Original entry on oeis.org
0, 2, 0, 8, 2, 18, 10, 42, 28, 80, 70, 162, 148, 290, 300, 530, 562, 918, 1020, 1570, 1780, 2602, 3022, 4286, 4992, 6858, 8110, 10872, 12888, 16962, 20178, 26134, 31138, 39728, 47412, 59848, 71312, 89072, 106176, 131440, 156400, 192164, 228330, 278616, 330502
Offset: 1
Cf.
A002865,
A135010,
A138121,
A138879,
A146076,
A206433,
A206434,
A206435,
A207378,
A336811,
A336812.
-
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<1 then [0, 0]
else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
[g[1]+h[1], g[2]+h[2] +((i+1) mod 2)*h[1]*i]
fi
end:
a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]):
seq(a(n), n=1..60); # Alois P. Heinz, Mar 16 2012
-
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i+1, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
A340057
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the block m consists of the divisors of m multiplied by A000041(n-m), with 1 <= m <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 1, 3, 3, 2, 4, 1, 3, 1, 2, 4, 5, 3, 6, 2, 6, 1, 2, 4, 1, 5, 7, 5, 10, 3, 9, 2, 4, 8, 1, 5, 1, 2, 3, 6, 11, 7, 14, 5, 15, 3, 6, 12, 2, 10, 1, 2, 3, 6, 1, 7, 15, 11, 22, 7, 21, 5, 10, 20, 3, 15, 2, 4, 6, 12, 1, 7, 1, 2, 4, 8, 22, 15, 30, 11, 33, 7, 14, 28, 5, 25
Offset: 1
Triangle begins:
[1];
[1], [1, 2];
[2], [1, 2], [1, 3];
[3], [2, 4], [1, 3], [1, 2, 4];
[5], [3, 6], [2, 6], [1, 2, 4], [1, 5];
[7], [5, 10], [3, 9], [2, 4, 8], [1, 5], [1, 2, 3, 6];
[11], [7, 14], [5, 15], [3, 6, 12], [2, 10], [1, 2, 3, 6], [1, 7];
...
Row sums gives A066186.
Written as a tetrahedrons the first five slices are:
--
1;
--
1,
1, 2;
-----
2,
1, 2,
1, 3;
-----
3,
2, 4,
1, 3,
1, 2, 4;
--------
5,
3, 6,
2, 6,
1, 2, 4,
1, 5;
--------
Row sums give A221529.
The slices of the tetrahedron appear in the upper zone of the following table (formed by four zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| | - | | | | | 5 |
| C | - | | | | 3 | 3 6 |
| O | - | | | 2 | 2 4 | 2 6 |
| N | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| D | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| D | A027750 | | | | | 1 |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A027750 | | | | 1 | 1 2 |
| I | A027750 | | | | 1 | 1 2 |
| S | A027750 | | | | 1 | 1 2 |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A027750 | | | 1 | 1 2 | 1 3 |
| S | A027750 | | | 1 | 1 2 | 1 3 |
| |---------|-----|-------|---------|-----------|-------------|
| | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| |---------|-----|-------|---------|-----------|-------------|
| | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| L | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| I | | * | * * | * * * | * * * * | * * * * * |
| N | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| K | | | | |\| | |\|\| | |\|\|\| | |\|\|\|\| |
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
| A | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| R | | | | 3 | 3 1 | 3 1 1 |
| T | | | | | 2 2 | 2 2 1 |
| I | | | | | 4 | 4 1 |
| T | | | | | | 3 2 |
| I | | | | | | 5 |
| O | | | | | | |
| N | | | | | | |
| S | | | | | | |
|---|---------|-----|-------|---------|-----------|-------------|
.
The upper zone is a condensed version of the "divisors" zone.
The above table is the table of A340056 upside down.
Cf.
A000041,
A002260,
A027750,
A066186,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A207031,
A207383,
A221529,
A221530,
A221531,
A236104,
A237593,
A245092,
A245095,
A221650,
A302246,
A302247,
A336811,
A336812,
A337209,
A338156,
A339106,
A339258,
A339278,
A339304,
A340011,
A340031,
A340032,
A340056,
A340057,
A340061.
A346533
Irregular triangle read by rows in which row n lists the first n - 2 terms of A000203 together with the sum of A000203(n-1) and A000203(n), with a(1) = 1.
Original entry on oeis.org
1, 4, 1, 7, 1, 3, 11, 1, 3, 4, 13, 1, 3, 4, 7, 18, 1, 3, 4, 7, 6, 20, 1, 3, 4, 7, 6, 12, 23, 1, 3, 4, 7, 6, 12, 8, 28, 1, 3, 4, 7, 6, 12, 8, 15, 31, 1, 3, 4, 7, 6, 12, 8, 15, 13, 30, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 40, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 42, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 38
Offset: 1
Triangle begins:
1;
4;
1, 7;
1, 3, 11;
1, 3, 4, 13;
1, 3, 4, 7, 18;
1, 3, 4, 7, 6, 20;
1, 3, 4, 7, 6, 12, 23;
1, 3, 4, 7, 6, 12, 8, 28;
1, 3, 4, 7, 6, 12, 8, 15, 31;
1, 3, 4, 7, 6, 12, 8, 15, 13, 30;
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 40;
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 42;
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 38;
...
For n = 7, sigma(7) = 1 + 7 = 8 and sigma(6) = 1 + 2 + 3 + 6 = 12, and 8 + 12 = 20, so the last term of row 7 is T(7,6) = 20. The other terms in row 7 are the first five terms of A000203, so the 7th row of the triangle is [1, 3, 4, 7, 6, 20].
For n = 7 we can see below the top view and the lateral view of the pyramid described in A245092 (with seven levels) and the top view and the lateral view of the tower described in A221529 (with 11 levels).
_
| |
| |
| |
_ |_|_
|_|_ | |
|_ _|_ |_ _|_
|_ _|_|_ | | |
|_ _ _| |_ |_ _|_|_
|_ _ _|_ _|_ |_ _ _| |_
|_ _ _ _| | |_ |_ _ _|_ _|_ _
|_ _ _ _|_|_ _| |_ _ _ _|_|_ _|
.
Figure 1. Figure 2.
Lateral view Lateral view
of the pyramid. of the tower.
.
. _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_| | | | | | | |_| | | | | |
|_ _|_| | | | | |_ _|_| | | |
|_ _| _|_| | | |_ _| _|_| |
|_ _ _| _|_| |_ _ _| _ _|
|_ _ _| _| |_ _ _| _|
|_ _ _ _| | |
|_ _ _ _| |_ _ _ _|
.
Figure 3. Figure 4.
Top view Top view
of the pyramid. of the tower.
.
Both polycubes have the same base which has an area equal to A024916(7) = 41 equaling the sum of the 7th row of triangle.
Note that in the top view of the tower the symmetric representation of sigma(6) and the symmetric representation of sigma(7) appear unified in the level 1 of the structure as shown above in the figure 4 (that is due the first two partition numbers A000041 are [1, 1]), so T(7,6) = sigma(7) + sigma(6) = 8 + 12 = 20.
.
Illustration of initial terms:
Row 1 Row 2 Row 3 Row 4 Row 5 Row 6
.
1 4 1 7 1 3 11 1 3 4 13 1 3 4 7 18
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_| | | |_| | |_| | | |_| | | | |_| | | | |
|_ _| | _| |_ _| | |_ _|_| | |_ _|_| | |
|_ _| | _| |_ _| _ _| |_ _| _| |
|_ _ _| | | |_ _ _| _|
|_ _ _| | _|
|_ _ _ _|
.
The length of row n is
A028310(n-1).
Cf.
A175254 (volume of the pyramid).
Cf.
A000041,
A221529,
A237270,
A237593,
A245092,
A245093 (similar),
A336811,
A336812,
A338156,
A339106,
A340035.
-
A346533row[n_]:=If[n==1,{1},Join[DivisorSigma[1,Range[n-2]],{Total[DivisorSigma[1,{n-1,n}]]}]];Array[A346533row,15] (* Paolo Xausa, Oct 23 2023 *)
A206433
Total number of odd parts in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 3, 3, 7, 9, 15, 19, 32, 40, 60, 78, 111, 143, 200, 252, 343, 437, 576, 728, 952, 1190, 1531, 1911, 2426, 3008, 3788, 4664, 5819, 7143, 8830, 10780, 13255, 16095, 19661, 23787, 28881, 34795, 42051, 50445, 60675, 72547, 86859, 103481, 123442, 146548
Offset: 1
Cf.
A001227,
A002865,
A006128,
A135010,
A138121,
A138137,
A182703,
A206434,
A206435,
A206436,
A207378,
A336811,
A336812.
-
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, n]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]]
fi
end:
a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, Mar 22 2012
-
b[n_, i_] := b[n, i] = Module[{f, g}, If[n==0 || i==1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]]+g[[1]], f[[2]]+g[[2]] + Mod[i, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
A206434
Total number of even parts in the last section of the set of partitions of n.
Original entry on oeis.org
0, 1, 0, 3, 1, 6, 4, 13, 10, 24, 23, 46, 46, 81, 88, 143, 159, 242, 278, 404, 470, 657, 776, 1057, 1251, 1663, 1984, 2587, 3089, 3967, 4742, 6012, 7184, 9001, 10753, 13351, 15917, 19594, 23335, 28514, 33883, 41140, 48787, 58894, 69691, 83680, 98809, 118101
Offset: 1
Cf.
A002865,
A006128,
A135010,
A138121,
A138137,
A182703,
A183063,
A206433,
A206435,
A206436,
A207378,
A336811,
A336812.
-
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]]
fi
end:
a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
seq (a(n), n=1..50); # Alois P. Heinz, Mar 22 2012
-
b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0 || i == 1, {1, 0}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + Mod[i+1, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[ a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
A340527
Triangle read by rows: T(n,k) = A024916(n-k+1)*A000041(k-1), 1 <= k <= n.
Original entry on oeis.org
1, 4, 1, 8, 4, 2, 15, 8, 8, 3, 21, 15, 16, 12, 5, 33, 21, 30, 24, 20, 7, 41, 33, 42, 45, 40, 28, 11, 56, 41, 66, 63, 75, 56, 44, 15, 69, 56, 82, 99, 105, 105, 88, 60, 22, 87, 69, 112, 123, 165, 147, 165, 120, 88, 30, 99, 87, 138, 168, 205, 231, 231, 225, 176, 120, 42, 127, 99, 174
Offset: 1
Triangle begins:
1;
4, 1;
8, 4, 2;
15, 8, 8, 3;
21, 15, 16, 12, 5;
33, 21, 30, 24, 20, 7;
41, 33, 42, 45, 40, 28, 11;
56, 41, 66, 63, 75, 56, 44, 15;
69, 56, 82, 99, 105, 105, 88, 60, 22;
87, 69, 112, 123, 165, 147, 165, 120, 88, 30;
99, 87, 138, 168, 205, 231, 231, 225, 176, 120, 42;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A000041 T(6,k)
1 1 * 33 = 33
2 1 * 21 = 21
3 2 * 15 = 30
4 3 * 8 = 24
5 5 * 4 = 20
6 7 * 1 = 7
. A024916
--------------------------
The sum of row 6 is 33 + 21 + 30 + 24 + 20 + 7 = 135, equaling A182738(6).
Cf.
A000070,
A066186,
A176206,
A221529,
A221531,
A237270,
A237593,
A336811,
A336812,
A338156,
A339106,
A340035,
A340424,
A340425,
A340426,
A340524,
A340526.
Comments