cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A302246 Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nonincreasing order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2018

Keywords

Comments

Also due to the correspondence divisor/part row n lists the terms of the n-th row of A338156 in nonincreasing order. In other words: row n lists in nonincreasing order the divisors of the terms of the n-th row of A176206. - Omar E. Pol, Jun 16 2022

Examples

			Triangle begins:
  1;
  2,1,1;
  3,2,1,1,1,1;
  4,3,2,2,2,1,1,1,1,1,1,1;
  5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1;
  6,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
  ...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There is only one 4, only one 3, three 2's and seven 1's, so the 4th row of this triangle is [4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1].
On the other hand for n = 4 the 4th row of A176206 is [4, 3, 2, 2, 1, 1, 1] and the divisors of these terms are [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1], [1] the same as the 4th row of A338156. These divisors listed in nonincreasing order give the 4th row of this triangle. - _Omar E. Pol_, Jun 16 2022
		

Crossrefs

Both column 1 and 2 are A000027.
Row n has length A006128(n).
The sum of row n is A066186(n).
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).
First differs from A036037, A080577, A181317, A237982 and A239512 at a(13) = T(4,3).
Cf. A302247 (mirror).

Programs

  • Mathematica
    nrows=10;Array[ReverseSort[Flatten[IntegerPartitions[#]]]&,nrows] (* Paolo Xausa, Jun 16 2022 *)
  • PARI
    row(n) = my(list = List()); forpart(p=n, for (k=1, #p, listput(list, p[k]));); vecsort(Vec(list), , 4); \\ Michel Marcus, Jun 16 2022

A302247 Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nondecreasing order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2018

Keywords

Comments

Also due to the correspondence divisor/part row n lists the terms of the n-th row of A338156 in nondecreasing order. In other words: row n lists in nondecreasing order the divisors of the terms of the n-th row of A176206. - Omar E. Pol, Jun 16 2022

Examples

			Triangle begins:
  1;
  1,1,2;
  1,1,1,1,2,3;
  1,1,1,1,1,1,1,2,2,2,3,4;
  1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5;
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,5,6;
  ...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There are seven 1's, three 2's, only one 3 and only one 4, so the 4th row of this triangle is [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4].
On the other hand for n = 4 the 4th row of A176206 is [4, 3, 2, 2, 1, 1, 1] and the divisors of these terms are [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1], [1] the same as the 4th row of A338156. These divisors listed in nondecreasing order give the 4th row of this triangle. - _Omar E. Pol_, Jun 16 2022
		

Crossrefs

Mirror of A302246.
Row n has length A006128(n).
The sum of row n is A066186(n).
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).
First differs from both A026791 and A080576 at a(17) = T(4,7).

Programs

  • Mathematica
    nrows=10; Array[Sort[Flatten[IntegerPartitions[#]]]&,nrows] (* Paolo Xausa, Jun 16 2022 *)
  • PARI
    row(n) = my(list = List()); forpart(p=n, for (k=1, #p, listput(list, p[k]));); vecsort(Vec(list)); \\ Michel Marcus, Jun 16 2022

A221649 Tetrahedron E(n,j,k) = k*T(j,k)*p(n-j), where T(j,k) = 1 if k divides j otherwise 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 1, 0, 3, 3, 2, 4, 1, 0, 3, 1, 2, 0, 4, 5, 3, 6, 2, 0, 6, 1, 2, 0, 4, 1, 0, 0, 0, 5, 7, 5, 10, 3, 0, 9, 2, 4, 0, 8, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6, 11, 7, 14, 5, 0, 15, 3, 6, 0, 12, 2, 0, 0, 0, 10, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7
Offset: 1

Views

Author

Omar E. Pol, Jan 21 2013

Keywords

Comments

The tetrahedron shows a connection between divisors and partitions.
The sum of all elements of slice n is A066186(n).
The sum of row j of slice n is A221529(n,j).
The sum of column k of slice n is A138785(n,k), the sum of all parts of size k in all partitions of n.
See also the tetrahedron of A221650.

Examples

			First five slices of tetrahedron are
---------------------------------------------------
n  j / k   1  2  3  4  5  6      A221529   A066186
---------------------------------------------------
1  1       1,                       1         1
...................................................
2  1       1,                       1
2  2       1, 2,                    3         4
...................................................
3  1       2,                       2
3  2       1, 2,                    3
3  3       1, 0, 3,                 4         9
...................................................
4  1       3,                       3
4  2       2, 4,                    6
4  3       1, 0, 3,                 4
4  4       1, 2, 0, 4,              7        20
...................................................
5  1       5,                       5
5  2       3, 6,                    9
5, 3,      2, 0, 6,                 8
5, 4,      1, 2, 0, 4,              7
5, 5,      1, 0, 0, 0, 5,           6        35
...................................................
.
From _Omar E. Pol_, Jul 26 2021: (Start)
The slices of the tetrahedron appear in the upper zone of the following table (formed by four zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
|   |    -    |     |       |         |           |  5          |
| C |    -    |     |       |         |  3        |  3 6        |
| O |    -    |     |       |  2      |  2 4      |  2 0 6      |
| N | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
| D | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
| D | A127093 |     |       |         |           |  1          |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A127093 |     |       |         |  1        |  1 2        |
| I | A127093 |     |       |         |  1        |  1 2        |
| S | A127093 |     |       |         |  1        |  1 2        |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A127093 |     |       |  1      |  1 2      |  1 0 3      |
| S | A127093 |     |       |  1      |  1 2      |  1 0 3      |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
| L | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
| I |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| N | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| K |         |  |  |  |\|  |  |\|\|  |  |\|\|\|  |  |\|\|\|\|  |
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
| A |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| R |         |     |       |  3      |  3 1      |  3 1 1      |
| T |         |     |       |         |  2 2      |  2 2 1      |
| I |         |     |       |         |  4        |  4 1        |
| T |         |     |       |         |           |  3 2        |
| I |         |     |       |         |           |  5          |
| O |         |     |       |         |           |             |
| N |         |     |       |         |           |             |
| S |         |     |       |         |           |             |
|---|---------|-----|-------|---------|-----------|-------------|
.
The upper zone is a condensed version of the "divisors" zone.
The above table is the table of A340011 upside down.
For more information about the correspondence divisor/part see A338156. (End)
		

Crossrefs

Programs

  • Mathematica
    A221649row[n_]:=Flatten[Table[If[Divisible[j,k],PartitionsP[n-j]k,0],{j,n},{k,j}]];Array[A221649row,10] (* Paolo Xausa, Sep 26 2023 *)

Formula

E(n,j,k) = k*A051731(j,k)*A000041(n-j) = A127093(j,k)*A000041(n-j) = k*A221650(n,j,k).

Extensions

a(18)-a(19) and a(28)-a(29) corrected by Paolo Xausa, Sep 26 2023

A066966 Total sum of even parts in all partitions of n.

Original entry on oeis.org

0, 2, 2, 10, 12, 30, 40, 82, 110, 190, 260, 422, 570, 860, 1160, 1690, 2252, 3170, 4190, 5760, 7540, 10142, 13164, 17450, 22442, 29300, 37410, 48282, 61170, 78132, 98310, 124444, 155582, 195310, 242722, 302570, 373882, 462954, 569130, 700570, 856970
Offset: 1

Views

Author

Vladeta Jovovic, Jan 26 2002

Keywords

Comments

Partial sums of A206436. - Omar E. Pol, Mar 17 2012
From Omar E. Pol, Apr 02 2023: (Start)
Convolution of A000041 and A146076.
Convolution of A002865 and A271342.
a(n) is also the sum of all even divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned even divisors are also all even parts of all partitions of n. (End)

Examples

			a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the even parts is 4+2+2+2 = 10.
		

Crossrefs

Programs

  • Maple
    g:=sum(2*j*x^(2*j)/(1-x^(2*j)),j=1..55)/product(1-x^j,j=1..55): gser:=series(g,x=0,45): seq(coeff(gser,x^n),n=1..41);
    # Emeric Deutsch, Feb 20 2006
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]*i]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..50);
    # Alois P. Heinz, Mar 22 2012
  • Mathematica
    max = 50; g = Sum[2*j*x^(2*j)/(1 - x^(2*j)), {j, 1, max}]/Product[1 - x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max - 1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *)
    Map[Total[Select[Flatten[IntegerPartitions[#]], EvenQ]] &, Range[30]] (* Peter J. C. Moses, Mar 14 2014 *)
  • PARI
    a(n) = 2*sum(k=1, floor(n/2), sigma(k)*numbpart(n-2*k) ); \\ Joerg Arndt, Jan 24 2014

Formula

a(n) = 2*Sum_{k=1..floor(n/2)} sigma(k)*numbpart(n-2*k).
a(n) = Sum_{k=0..n} k*A113686(n,k). - Emeric Deutsch, Feb 20 2006
G.f.: Sum_{j>=1} (2jx^(2j)/(1-x^(2j)))/Product_{j>=1}(1-x^j). - Emeric Deutsch, Feb 20 2006
a(n) = A066186(n) - A066967(n). - Omar E. Pol, Mar 10 2012
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)). - Vaclav Kotesovec, May 29 2018

Extensions

More terms from Naohiro Nomoto and Sascha Kurz, Feb 07 2002
More terms from Emeric Deutsch, Feb 20 2006

A340031 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the j-th row of triangle A127093, where j = n - m + 1 and 1 <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 0, 3, 1, 2, 1, 1, 1, 2, 0, 4, 1, 0, 3, 1, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2020

Keywords

Comments

Another version of A338156 which is the main sequence with further information about the correspondence divisor/part.

Examples

			Triangle begins:
[1];
[1,2],      [1];
[1,0,3],    [1,2],    [1],    [1];
[1,2,0,4],  [1,0,3],  [1,2],  [1,2],  [1],  [1],  [1];
[1,0,0,0,5],[1,2,0,4],[1,0,3],[1,0,3],[1,2],[1,2],[1,2],[1],[1],[1],[1],[1];
[...
Written as an irregular tetrahedron the first five slices are:
[1],
-------
[1, 2],
[1],
----------
[1, 0, 3],
[1, 2],
[1],
[1];
-------------
[1, 2, 0, 4],
[1, 0, 3],
[1, 2],
[1, 2],
[1],
[1],
[1];
----------------
[1, 0, 0, 0, 5],
[1, 2, 0, 4],
[1, 0, 3],
[1, 0, 3],
[1, 2],
[1, 2],
[1, 2],
[1],
[1],
[1],
[1],
[1];
.
The following table formed by three zones shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |     |       |         |           |             |
| A |         |     |       |         |           |             |
| R |         |     |       |         |           |             |
| T |         |     |       |         |           |  5          |
| I |         |     |       |         |           |  3 2        |
| T |         |     |       |         |  4        |  4 1        |
| I |         |     |       |         |  2 2      |  2 2 1      |
| O |         |     |       |  3      |  3 1      |  3 1 1      |
| N |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| S |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
| L |         |  |  |  |/|  |  |/|/|  |  |/|/|/|  |  |/|/|/|/|  |
| I | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| N |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| K | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
|   |---------|-----|-------|---------|-----------|-------------|
| D | A127093 |     |       |  1      |  1 2      |  1 0 3      |
| I | A127093 |     |       |  1      |  1 2      |  1 0 3      |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A127093 |     |       |         |  1        |  1 2        |
| S | A127093 |     |       |         |  1        |  1 2        |
| O | A127093 |     |       |         |  1        |  1 2        |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|---|---------|-----|-------|---------|-----------|-------------|
.
The table is essentially the same table of A338156 but here, in the lower zone, every row is A127093 instead of A027750.
.
		

Crossrefs

Programs

  • Mathematica
    A127093row[n_]:=Table[Boole[Divisible[n,k]]k,{k,n}];
    A340031row[n_]:=Flatten[Table[ConstantArray[A127093row[n-m+1],PartitionsP[m-1]],{m,n}]];
    Array[A340031row,7] (* Paolo Xausa, Sep 28 2023 *)

A340011 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of the j-th row of triangle A127093 but with every term multiplied by A000041(m-1), where j = n - m + 1 and 1 <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 0, 3, 1, 2, 2, 1, 2, 0, 4, 1, 0, 3, 2, 4, 3, 1, 0, 0, 0, 5, 1, 2, 0, 4, 2, 0, 6, 3, 6, 5, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 5, 2, 4, 0, 8, 3, 0, 9, 5, 10, 7, 1, 0, 0, 0, 0, 0, 7, 1, 2, 3, 0, 0, 6, 2, 0, 0, 0, 10, 3, 6, 0, 12, 5, 0, 15, 7, 14, 11, 1, 2, 0, 4, 0, 0, 0, 8
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2020

Keywords

Comments

This triangle is a condensed version of the more irregular triangle A340031.
For further information about the correspondence divisor/part see A338156.

Examples

			Triangle begins:
[1];
[1, 2],          [1];
[1, 0, 3],       [1, 2],       [2];
[1, 2, 0, 4],    [1, 0, 3],    [2, 4],    [3];
[1, 0, 0, 0, 5], [1, 2, 0, 4], [2, 0, 6], [3, 6], [5];
[...
Row sums give A066186.
Written as an irregular tetrahedron the first five slices are:
--
1;
-----
1, 2,
1;
--------
1, 0, 3,
1, 2,
2;
-----------
1, 2, 0, 4,
1, 0, 3,
2, 4,
3;
--------------
1, 0, 0, 0, 5,
1, 2, 0, 4,
2, 0, 6,
3, 6,
5;
--------------
Row sums give A339106.
The following table formed by four zones shows the correspondence between divisor and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |     |       |         |           |             |
| A |         |     |       |         |           |             |
| R |         |     |       |         |           |             |
| T |         |     |       |         |           |  5          |
| I |         |     |       |         |           |  3 2        |
| T |         |     |       |         |  4        |  4 1        |
| I |         |     |       |         |  2 2      |  2 2 1      |
| O |         |     |       |  3      |  3 1      |  3 1 1      |
| N |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| S |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
| L |         |  |  |  |/|  |  |/|/|  |  |/|/|/|  |  |/|/|/|/|  |
| I | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| N |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| K | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
|   |---------|-----|-------|---------|-----------|-------------|
| D | A127093 |     |       |  1      |  1 2      |  1 0 3      |
| I | A127093 |     |       |  1      |  1 2      |  1 0 3      |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A127093 |     |       |         |  1        |  1 2        |
| S | A127093 |     |       |         |  1        |  1 2        |
| O | A127093 |     |       |         |  1        |  1 2        |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
| C | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
| O |    -    |     |       |  2      |  2 4      |  2 0 6      |
| N |    -    |     |       |         |  3        |  3 6        |
| D |    -    |     |       |         |           |  5          |
|---|---------|-----|-------|---------|-----------|-------------|
.
This lower zone of the table is a condensed version of the "divisors" zone.
		

Crossrefs

Programs

A340032 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(n-m) copies of the row m of triangle A127093, with 1 <= m <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 0, 3, 1, 1, 1, 1, 2, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 3, 1, 0, 3, 1, 2, 0, 4, 1, 0, 0, 0, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 0, 3, 1, 0, 3, 1, 0, 3, 1, 2, 0, 4, 1, 2, 0, 4, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2020

Keywords

Comments

For further information about the correspondence divisor/part see A338156.

Examples

			Triangle begins:
  1;
  1, 1, 2;
  1, 1, 1, 2, 1, 0, 3;
  1, 1, 1, 1, 2, 1, 2, 1, 0, 3, 1, 2, 0, 4;
  1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 3, 1, 0, 3, 1, 2, 0, 4, 1, 0, 0, 0, 5;
  ...
Written as an irregular tetrahedron the first five slices are:
  1;
  --
  1,
  1, 2;
  -----
  1,
  1,
  1, 2,
  1, 0, 3;
  --------
  1,
  1,
  1,
  1, 2,
  1, 2,
  1, 0, 3,
  1, 2, 0, 4;
  -----------
  1,
  1,
  1,
  1,
  1,
  1, 2,
  1, 2,
  1, 2,
  1, 0, 3,
  1, 0, 3,
  1, 2, 0, 4,
  1, 0, 0, 0, 5;
  --------------
  ...
The slices of the tetrahedron appear in the upper zone of the following table (formed by three zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
| D | A127093 |     |       |         |           |  1          |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A127093 |     |       |         |  1        |  1 2        |
| I | A127093 |     |       |         |  1        |  1 2        |
| S | A127093 |     |       |         |  1        |  1 2        |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A127093 |     |       |  1      |  1 2      |  1 0 3      |
| S | A127093 |     |       |  1      |  1 2      |  1 0 3      |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
| L | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
| I |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| N | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| K |         |  |  |  |\|  |  |\|\|  |  |\|\|\|  |  |\|\|\|\|  |
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
| A |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| R |         |     |       |  3      |  3 1      |  3 1 1      |
| T |         |     |       |         |  2 2      |  2 2 1      |
| I |         |     |       |         |  4        |  4 1        |
| T |         |     |       |         |           |  3 2        |
| I |         |     |       |         |           |  5          |
| O |         |     |       |         |           |             |
| N |         |     |       |         |           |             |
| S |         |     |       |         |           |             |
|---|---------|-----|-------|---------|-----------|-------------|
.
The table is essentially the same table of A340035 but here, in the upper zone, every row is A127093 instead of A027750.
Also the above table is the table of A340031 upside down.
		

Crossrefs

Programs

  • Mathematica
    A127093row[n_]:=Table[Boole[Divisible[n,k]]k,{k,n}];
    A340032row[n_]:=Flatten[Table[ConstantArray[A127093row[m],PartitionsP[n-m]],{m,n}]];
    Array[A340032row,7] (* Paolo Xausa, Sep 28 2023 *)

A340056 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of the divisors of j multiplied by A000041(m-1), where j = n - m + 1 and 1 <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 4, 1, 3, 2, 4, 3, 1, 5, 1, 2, 4, 2, 6, 3, 6, 5, 1, 2, 3, 6, 1, 5, 2, 4, 8, 3, 9, 5, 10, 7, 1, 7, 1, 2, 3, 6, 2, 10, 3, 6, 12, 5, 15, 7, 14, 11, 1, 2, 4, 8, 1, 7, 2, 4, 6, 12, 3, 15, 5, 10, 20, 7, 21, 11, 22, 15, 1, 3, 9, 1, 2, 4, 8, 2, 14, 3, 6, 9, 18, 5
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2020

Keywords

Comments

This triangle is a condensed version of the more irregular triangle A338156 which is the main sequence with further information about the correspondence divisor/part.

Examples

			Triangle begins:
  [1];
  [1, 2],    [1];
  [1, 3],    [1, 2],    [2];
  [1, 2, 4], [1, 3],    [2, 4], [3];
  [1, 5],    [1, 2, 4], [2, 6], [3, 6], [5];
  [...
The row sums of triangle give A066186.
Written as an irregular tetrahedron the first five slices are:
  1;
  -----
  1, 2,
  1;
  -----
  1, 3,
  1, 2,
  2;
  --------
  1, 2, 4,
  1, 3,
  2, 4,
  3;
  --------
  1, 5,
  1, 2, 4,
  2, 6,
  3, 6,
  5;
  --------
The row sums of tetrahedron give A339106.
The slices of the tetrahedron appear in the following table formed by four zones shows the correspondence between divisor and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |     |       |         |           |             |
| A |         |     |       |         |           |             |
| R |         |     |       |         |           |             |
| T |         |     |       |         |           |  5          |
| I |         |     |       |         |           |  3 2        |
| T |         |     |       |         |  4        |  4 1        |
| I |         |     |       |         |  2 2      |  2 2 1      |
| O |         |     |       |  3      |  3 1      |  3 1 1      |
| N |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| S |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
| L |         |  |  |  |/|  |  |/|/|  |  |/|/|/|  |  |/|/|/|/|  |
| I | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| N |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| K | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A027750 |     |  1    |  1 2    |  1   3    |  1 2   4    |
|   |---------|-----|-------|---------|-----------|-------------|
| D | A027750 |     |       |  1      |  1 2      |  1   3      |
| I | A027750 |     |       |  1      |  1 2      |  1   3      |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A027750 |     |       |         |  1        |  1 2        |
| S | A027750 |     |       |         |  1        |  1 2        |
| O | A027750 |     |       |         |  1        |  1 2        |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |
| C | A027750 |     |  1    |  1 2    |  1   3    |  1 2   4    |
| O |    -    |     |       |  2      |  2 4      |  2   6      |
| N |    -    |     |       |         |  3        |  3 6        |
| D |    -    |     |       |         |           |  5          |
|---|---------|-----|-------|---------|-----------|-------------|
.
The lower zone is a condensed version of the "divisors" zone.
		

Crossrefs

Programs

  • Mathematica
    A340056row[n_]:=Flatten[Table[Divisors[n-m]PartitionsP[m],{m,0,n-1}]];Array[A340056row,10] (* Paolo Xausa, Sep 01 2023 *)

A340423 Irregular triangle read by rows T(n,k) in which row n has length A000041(n-1) and every column k is A024916, n >= 1, k >= 1.

Original entry on oeis.org

1, 4, 8, 1, 15, 4, 1, 21, 8, 4, 1, 1, 33, 15, 8, 4, 4, 1, 1, 41, 21, 15, 8, 8, 4, 4, 1, 1, 1, 1, 56, 33, 21, 15, 15, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 87, 56, 41, 33, 33, 21, 21, 15, 15, 15, 15, 8, 8, 8, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 07 2021

Keywords

Comments

T(n,k) is the number of cubic cells (or cubes) in the k-th level starting from the base of the tower described in A221529 whose largest side of the base is equal to n (see example). - Omar E. Pol, Jan 08 2022

Examples

			Triangle begins:
   1;
   4;
   8,  1;
  15,  4,  1;
  21,  8,  4,  1,  1;
  33, 15,  8,  4,  4,  1,  1;
  41, 21, 15,  8,  8,  4,  4, 1, 1, 1, 1;
  56, 33, 21, 15, 15,  8,  8, 4, 4, 4, 4, 1, 1, 1, 1;
  69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1;
...
For n = 9 the length of row 9 is A000041(9-1) = 22.
From _Omar E. Pol_, Jan 08 2022: (Start)
For n = 9 the lateral view and top view of the tower described in A221529 look like as shown below:
                        _
    22        1        | |
    21        1        | |
    20        1        | |
    19        1        | |
    18        1        | |
    17        1        | |
    16        1        |_|_
    15        4        |   |
    14        4        |   |
    13        4        |   |
    12        4        |_ _|_
    11        8        |   | |
    10        8        |   | |
     9        8        |   | |
     8        8        |_ _|_|_
     7       15        |     | |
     6       15        |_ _ _| |_
     5       21        |     |   |
     4       21        |_ _ _|_ _|_
     3       33        |_ _ _ _| | |_
     2       41        |_ _ _ _|_|_ _|_ _
     1       69        |_ _ _ _ _|_ _|_ _|
.
   Level   Row 9         Lateral view
     k     T(9,k)        of the tower
.
                        _ _ _ _ _ _ _ _ _
                       |_| | | | | | |   |
                       |_ _|_| | | | |   |
                       |_ _|  _|_| | |   |
                       |_ _ _|    _|_|   |
                       |_ _ _|  _|    _ _|
                       |_ _ _ _|     |
                       |_ _ _ _|  _ _|
                       |         |
                       |_ _ _ _ _|
.
                           Top view
                         of the tower
.
For n = 9 and k = 1 there are 69 cubic cells in the level 1 starting from the base of the tower, so T(9,1) = 69.
For n = 9 and k = 22 there is only one cubic cell in the level 22 (the top) of the tower, so T(9,22) = 1.
The volume of the tower (also the total number of cubic cells) represents the 9th term of the convolution of A000203 and A000041 hence it's equal to A066186(9) = 270, equaling the sum of the 9th row of triangle. (End)
		

Crossrefs

Row sums give A066186.
Row lengths give A000041.
The length of the m-th block in row n is A187219(m), m >= 1.
Cf. A350637 (analog for the stepped pyramid described in A245092).

Programs

  • PARI
    f(n) = numbpart(n-1);
    T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--; ); 1+s; } \\ A336811
    g(n) = sum(k=1, n, n\k*k); \\ A024916
    row(n) = vector(f(n), k, g(T(n,k))); \\ Michel Marcus, Jan 22 2022

Formula

T(n,k) = A024916(A336811(n,k)).
T(n,k) = Sum_{j=1..n} A339278(j,k). - Omar E. Pol, Jan 08 2022

A340584 Irregular triangle read by rows T(n,k) in which row n lists sigma(n) + sigma(n-1) together with the first n - 2 terms of A000203 in reverse order, with T(1,1) = 1, n >= 1.

Original entry on oeis.org

1, 4, 7, 1, 11, 3, 1, 13, 4, 3, 1, 18, 7, 4, 3, 1, 20, 6, 7, 4, 3, 1, 23, 12, 6, 7, 4, 3, 1, 28, 8, 12, 6, 7, 4, 3, 1, 31, 15, 8, 12, 6, 7, 4, 3, 1, 30, 13, 15, 8, 12, 6, 7, 4, 3, 1, 40, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 42, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 38, 28, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 12 2021

Keywords

Comments

T(n,k) is the total area (or number of cells) of the terraces that are in the k-th level that contains terraces starting from the base of the symmetric tower (a polycube) described in A221529 which has A000041(n-1) levels in total. The terraces of the polycube are the symmetric representation of sigma. The terraces are in the levels that are the partition numbers A000041 starting from the base. Note that for n >= 2 there are n - 1 terraces because the first terrace of the tower is formed by two symmetric representations of sigma in the same level. The volume (or the number of cubes) equals A066186(n), the sum of all parts of all partitions of n. The volume is also the sum of all divisors of all terms of the first n rows of A336811. That is due to the correspondence between divisors and partitions (cf. A336811). The growth of the volume (A066186) represents the convolution of A000203 and A000041.

Examples

			Triangle begins:
   1;
   4;
   7,  1;
  11,  3,  1;
  13,  4,  3,  1;
  18,  7,  4,  3,  1;
  20,  6,  7,  4,  3,  1;
  23, 12,  6,  7,  4,  3,  1;
  28,  8, 12,  6,  7,  4,  3,  1;
  31, 15,  8, 12,  6,  7,  4,  3,  1;
  30, 13, 15,  8, 12,  6,  7,  4,  3,  1;
  40, 18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
  42, 12, 18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
  38, 28, 12, 18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
...
For n = 7, sigma(7) = 1 + 7 = 8 and sigma(6) = 1 + 2 + 3 + 6 = 12, and 8 + 12 = 20, so the first term of row 7 is T(7,1) = 20. The other terms in row 7 are the first five terms of A000203 in reverse order, that is [6, 7, 4, 3, 1] so the 7th row of the triangle is [20, 6, 7, 4, 3, 1].
From _Omar E. Pol_, Jul 11 2021: (Start)
For n = 7 we can see below the top view and the lateral view of the pyramid described in A245092 (with seven levels) and the top view and the lateral view of the tower described in A221529 (with 11 levels).
                                           _
                                          | |
                                          | |
                                          | |
        _                                 |_|_
       |_|_                               |   |
       |_ _|_                             |_ _|_
       |_ _|_|_                           |   | |
       |_ _ _| |_                         |_ _|_|_
       |_ _ _|_ _|_                       |_ _ _| |_
       |_ _ _ _| | |_                     |_ _ _|_ _|_ _
       |_ _ _ _|_|_ _|                    |_ _ _ _|_|_ _|
.
         Figure 1.                           Figure 2.
        Lateral view                       Lateral view
       of the pyramid.                     of the tower.
.
.       _ _ _ _ _ _ _                      _ _ _ _ _ _ _
       |_| | | | | | |                    |_| | | | |   |
       |_ _|_| | | | |                    |_ _|_| | |   |
       |_ _|  _|_| | |                    |_ _|  _|_|   |
       |_ _ _|    _|_|                    |_ _ _|    _ _|
       |_ _ _|  _|                        |_ _ _|  _|
       |_ _ _ _|                          |       |
       |_ _ _ _|                          |_ _ _ _|
.
          Figure 3.                          Figure 4.
          Top view                           Top view
       of the pyramid.                     of the tower.
.
Both polycubes have the same base which has an area equal to A024916(7) = 41 equaling the sum of the 7th row of triangle.
Note that in the top view of the tower the symmetric representation of sigma(6) and the symmetric representation of sigma(7) appear unified in the level 1 of the structure as shown above in the figure 4 (that is due to the first two partition numbers A000041 are [1, 1]), so T(7,1) = sigma(7) + sigma(6) = 8 + 12 = 20. (End)
		

Crossrefs

The length of row n is A028310(n-1).
Row sums give A024916.
Column 1 gives 1 together with A092403.
Other columns give A000203.
Cf. A175254 (volume of the pyramid).
Cf. A066186 (volume of the tower).
Cf. A346533 (mirror).

Programs

  • Mathematica
    Table[If[n <= 2, {Total@ #}, Prepend[#2, Total@ #1] & @@ TakeDrop[#, 2]] &@ DivisorSigma[1, Range[n, 1, -1]], {n, 14}] // Flatten (* Michael De Vlieger, Jan 13 2021 *)
Previous Showing 11-20 of 36 results. Next