A302246
Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nonincreasing order.
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1
Offset: 1
Triangle begins:
1;
2,1,1;
3,2,1,1,1,1;
4,3,2,2,2,1,1,1,1,1,1,1;
5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1;
6,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There is only one 4, only one 3, three 2's and seven 1's, so the 4th row of this triangle is [4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1].
On the other hand for n = 4 the 4th row of A176206 is [4, 3, 2, 2, 1, 1, 1] and the divisors of these terms are [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1], [1] the same as the 4th row of A338156. These divisors listed in nonincreasing order give the 4th row of this triangle. - _Omar E. Pol_, Jun 16 2022
The number of parts k in row n is
A066633(n,k).
The sum of all parts k in row n is
A138785(n,k).
The number of parts >= k in row n is
A181187(n,k).
The sum of all parts >= k in row n is
A206561(n,k).
The number of parts <= k in row n is
A210947(n,k).
The sum of all parts <= k in row n is
A210948(n,k).
-
nrows=10;Array[ReverseSort[Flatten[IntegerPartitions[#]]]&,nrows] (* Paolo Xausa, Jun 16 2022 *)
-
row(n) = my(list = List()); forpart(p=n, for (k=1, #p, listput(list, p[k]));); vecsort(Vec(list), , 4); \\ Michel Marcus, Jun 16 2022
A302247
Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nondecreasing order.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
1;
1,1,2;
1,1,1,1,2,3;
1,1,1,1,1,1,1,2,2,2,3,4;
1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5;
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,5,6;
...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There are seven 1's, three 2's, only one 3 and only one 4, so the 4th row of this triangle is [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4].
On the other hand for n = 4 the 4th row of A176206 is [4, 3, 2, 2, 1, 1, 1] and the divisors of these terms are [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1], [1] the same as the 4th row of A338156. These divisors listed in nondecreasing order give the 4th row of this triangle. - _Omar E. Pol_, Jun 16 2022
The number of parts k in row n is
A066633(n,k).
The sum of all parts k in row n is
A138785(n,k).
The number of parts >= k in row n is
A181187(n,k).
The sum of all parts >= k in row n is
A206561(n,k).
The number of parts <= k in row n is
A210947(n,k).
The sum of all parts <= k in row n is
A210948(n,k).
-
nrows=10; Array[Sort[Flatten[IntegerPartitions[#]]]&,nrows] (* Paolo Xausa, Jun 16 2022 *)
-
row(n) = my(list = List()); forpart(p=n, for (k=1, #p, listput(list, p[k]));); vecsort(Vec(list)); \\ Michel Marcus, Jun 16 2022
A221649
Tetrahedron E(n,j,k) = k*T(j,k)*p(n-j), where T(j,k) = 1 if k divides j otherwise 0.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 1, 0, 3, 3, 2, 4, 1, 0, 3, 1, 2, 0, 4, 5, 3, 6, 2, 0, 6, 1, 2, 0, 4, 1, 0, 0, 0, 5, 7, 5, 10, 3, 0, 9, 2, 4, 0, 8, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6, 11, 7, 14, 5, 0, 15, 3, 6, 0, 12, 2, 0, 0, 0, 10, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7
Offset: 1
First five slices of tetrahedron are
---------------------------------------------------
n j / k 1 2 3 4 5 6 A221529 A066186
---------------------------------------------------
1 1 1, 1 1
...................................................
2 1 1, 1
2 2 1, 2, 3 4
...................................................
3 1 2, 2
3 2 1, 2, 3
3 3 1, 0, 3, 4 9
...................................................
4 1 3, 3
4 2 2, 4, 6
4 3 1, 0, 3, 4
4 4 1, 2, 0, 4, 7 20
...................................................
5 1 5, 5
5 2 3, 6, 9
5, 3, 2, 0, 6, 8
5, 4, 1, 2, 0, 4, 7
5, 5, 1, 0, 0, 0, 5, 6 35
...................................................
.
From _Omar E. Pol_, Jul 26 2021: (Start)
The slices of the tetrahedron appear in the upper zone of the following table (formed by four zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| | - | | | | | 5 |
| C | - | | | | 3 | 3 6 |
| O | - | | | 2 | 2 4 | 2 0 6 |
| N | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| D | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| D | A127093 | | | | | 1 |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A127093 | | | | 1 | 1 2 |
| I | A127093 | | | | 1 | 1 2 |
| S | A127093 | | | | 1 | 1 2 |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A127093 | | | 1 | 1 2 | 1 0 3 |
| S | A127093 | | | 1 | 1 2 | 1 0 3 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| L | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| I | | * | * * | * * * | * * * * | * * * * * |
| N | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| K | | | | |\| | |\|\| | |\|\|\| | |\|\|\|\| |
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
| A | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| R | | | | 3 | 3 1 | 3 1 1 |
| T | | | | | 2 2 | 2 2 1 |
| I | | | | | 4 | 4 1 |
| T | | | | | | 3 2 |
| I | | | | | | 5 |
| O | | | | | | |
| N | | | | | | |
| S | | | | | | |
|---|---------|-----|-------|---------|-----------|-------------|
.
The upper zone is a condensed version of the "divisors" zone.
The above table is the table of A340011 upside down.
For more information about the correspondence divisor/part see A338156. (End)
Cf.
A000005,
A000041,
A000203,
A027750,
A051731,
A066186,
A127093,
A138785,
A221529,
A221650,
A237593,
A336811,
A336812,
A338156,
A340011,
A340031,
A340032,
A340035,
A340056.
-
A221649row[n_]:=Flatten[Table[If[Divisible[j,k],PartitionsP[n-j]k,0],{j,n},{k,j}]];Array[A221649row,10] (* Paolo Xausa, Sep 26 2023 *)
a(18)-a(19) and a(28)-a(29) corrected by
Paolo Xausa, Sep 26 2023
A066966
Total sum of even parts in all partitions of n.
Original entry on oeis.org
0, 2, 2, 10, 12, 30, 40, 82, 110, 190, 260, 422, 570, 860, 1160, 1690, 2252, 3170, 4190, 5760, 7540, 10142, 13164, 17450, 22442, 29300, 37410, 48282, 61170, 78132, 98310, 124444, 155582, 195310, 242722, 302570, 373882, 462954, 569130, 700570, 856970
Offset: 1
a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the even parts is 4+2+2+2 = 10.
Cf.
A000041,
A000203,
A002865,
A066186,
A066897,
A066898,
A066967,
A113686,
A146076,
A206436,
A271342,
A338156.
-
g:=sum(2*j*x^(2*j)/(1-x^(2*j)),j=1..55)/product(1-x^j,j=1..55): gser:=series(g,x=0,45): seq(coeff(gser,x^n),n=1..41);
# Emeric Deutsch, Feb 20 2006
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]*i]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50);
# Alois P. Heinz, Mar 22 2012
-
max = 50; g = Sum[2*j*x^(2*j)/(1 - x^(2*j)), {j, 1, max}]/Product[1 - x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max - 1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *)
Map[Total[Select[Flatten[IntegerPartitions[#]], EvenQ]] &, Range[30]] (* Peter J. C. Moses, Mar 14 2014 *)
-
a(n) = 2*sum(k=1, floor(n/2), sigma(k)*numbpart(n-2*k) ); \\ Joerg Arndt, Jan 24 2014
A340031
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the j-th row of triangle A127093, where j = n - m + 1 and 1 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 1, 0, 3, 1, 2, 1, 1, 1, 2, 0, 4, 1, 0, 3, 1, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
[1];
[1,2], [1];
[1,0,3], [1,2], [1], [1];
[1,2,0,4], [1,0,3], [1,2], [1,2], [1], [1], [1];
[1,0,0,0,5],[1,2,0,4],[1,0,3],[1,0,3],[1,2],[1,2],[1,2],[1],[1],[1],[1],[1];
[...
Written as an irregular tetrahedron the first five slices are:
[1],
-------
[1, 2],
[1],
----------
[1, 0, 3],
[1, 2],
[1],
[1];
-------------
[1, 2, 0, 4],
[1, 0, 3],
[1, 2],
[1, 2],
[1],
[1],
[1];
----------------
[1, 0, 0, 0, 5],
[1, 2, 0, 4],
[1, 0, 3],
[1, 0, 3],
[1, 2],
[1, 2],
[1, 2],
[1],
[1],
[1],
[1],
[1];
.
The following table formed by three zones shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| |
| I | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| N | | * | * * | * * * | * * * * | * * * * * |
| K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| |---------|-----|-------|---------|-----------|-------------|
| D | A127093 | | | 1 | 1 2 | 1 0 3 |
| I | A127093 | | | 1 | 1 2 | 1 0 3 |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A127093 | | | | 1 | 1 2 |
| S | A127093 | | | | 1 | 1 2 |
| O | A127093 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
The table is essentially the same table of A338156 but here, in the lower zone, every row is A127093 instead of A027750.
.
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A221649,
A221650,
A237593,
A245095,
A302246,
A302247,
A336811,
A337209,
A339106,
A339258,
A339278,
A339304,
A340011,
A340032,
A340035,
A340061.
A340011
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of the j-th row of triangle A127093 but with every term multiplied by A000041(m-1), where j = n - m + 1 and 1 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 1, 0, 3, 1, 2, 2, 1, 2, 0, 4, 1, 0, 3, 2, 4, 3, 1, 0, 0, 0, 5, 1, 2, 0, 4, 2, 0, 6, 3, 6, 5, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 5, 2, 4, 0, 8, 3, 0, 9, 5, 10, 7, 1, 0, 0, 0, 0, 0, 7, 1, 2, 3, 0, 0, 6, 2, 0, 0, 0, 10, 3, 6, 0, 12, 5, 0, 15, 7, 14, 11, 1, 2, 0, 4, 0, 0, 0, 8
Offset: 1
Triangle begins:
[1];
[1, 2], [1];
[1, 0, 3], [1, 2], [2];
[1, 2, 0, 4], [1, 0, 3], [2, 4], [3];
[1, 0, 0, 0, 5], [1, 2, 0, 4], [2, 0, 6], [3, 6], [5];
[...
Row sums give A066186.
Written as an irregular tetrahedron the first five slices are:
--
1;
-----
1, 2,
1;
--------
1, 0, 3,
1, 2,
2;
-----------
1, 2, 0, 4,
1, 0, 3,
2, 4,
3;
--------------
1, 0, 0, 0, 5,
1, 2, 0, 4,
2, 0, 6,
3, 6,
5;
--------------
Row sums give A339106.
The following table formed by four zones shows the correspondence between divisor and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| |
| I | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| N | | * | * * | * * * | * * * * | * * * * * |
| K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| |---------|-----|-------|---------|-----------|-------------|
| D | A127093 | | | 1 | 1 2 | 1 0 3 |
| I | A127093 | | | 1 | 1 2 | 1 0 3 |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A127093 | | | | 1 | 1 2 |
| S | A127093 | | | | 1 | 1 2 |
| O | A127093 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
| C | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| O | - | | | 2 | 2 4 | 2 0 6 |
| N | - | | | | 3 | 3 6 |
| D | - | | | | | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
This lower zone of the table is a condensed version of the "divisors" zone.
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A221649,
A221650,
A237593,
A245095,
A302246,
A302247,
A336811,
A336812,
A337209,
A338156,
A339106,
A339258,
A339278,
A339304,
A340031,
A340032,
A340035,
A340061.
A340032
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(n-m) copies of the row m of triangle A127093, with 1 <= m <= n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 1, 0, 3, 1, 1, 1, 1, 2, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 3, 1, 0, 3, 1, 2, 0, 4, 1, 0, 0, 0, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 0, 3, 1, 0, 3, 1, 0, 3, 1, 2, 0, 4, 1, 2, 0, 4, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6
Offset: 1
Triangle begins:
1;
1, 1, 2;
1, 1, 1, 2, 1, 0, 3;
1, 1, 1, 1, 2, 1, 2, 1, 0, 3, 1, 2, 0, 4;
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 3, 1, 0, 3, 1, 2, 0, 4, 1, 0, 0, 0, 5;
...
Written as an irregular tetrahedron the first five slices are:
1;
--
1,
1, 2;
-----
1,
1,
1, 2,
1, 0, 3;
--------
1,
1,
1,
1, 2,
1, 2,
1, 0, 3,
1, 2, 0, 4;
-----------
1,
1,
1,
1,
1,
1, 2,
1, 2,
1, 2,
1, 0, 3,
1, 0, 3,
1, 2, 0, 4,
1, 0, 0, 0, 5;
--------------
...
The slices of the tetrahedron appear in the upper zone of the following table (formed by three zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| D | A127093 | | | | | 1 |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A127093 | | | | 1 | 1 2 |
| I | A127093 | | | | 1 | 1 2 |
| S | A127093 | | | | 1 | 1 2 |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A127093 | | | 1 | 1 2 | 1 0 3 |
| S | A127093 | | | 1 | 1 2 | 1 0 3 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| L | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| I | | * | * * | * * * | * * * * | * * * * * |
| N | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| K | | | | |\| | |\|\| | |\|\|\| | |\|\|\|\| |
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
| A | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| R | | | | 3 | 3 1 | 3 1 1 |
| T | | | | | 2 2 | 2 2 1 |
| I | | | | | 4 | 4 1 |
| T | | | | | | 3 2 |
| I | | | | | | 5 |
| O | | | | | | |
| N | | | | | | |
| S | | | | | | |
|---|---------|-----|-------|---------|-----------|-------------|
.
The table is essentially the same table of A340035 but here, in the upper zone, every row is A127093 instead of A027750.
Also the above table is the table of A340031 upside down.
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A245095,
A221649,
A221650,
A237593,
A302246,
A302247,
A336811,
A337209,
A338156,
A339106,
A339258,
A339278,
A339304,
A340031,
A340061.
A340056
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of the divisors of j multiplied by A000041(m-1), where j = n - m + 1 and 1 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 4, 1, 3, 2, 4, 3, 1, 5, 1, 2, 4, 2, 6, 3, 6, 5, 1, 2, 3, 6, 1, 5, 2, 4, 8, 3, 9, 5, 10, 7, 1, 7, 1, 2, 3, 6, 2, 10, 3, 6, 12, 5, 15, 7, 14, 11, 1, 2, 4, 8, 1, 7, 2, 4, 6, 12, 3, 15, 5, 10, 20, 7, 21, 11, 22, 15, 1, 3, 9, 1, 2, 4, 8, 2, 14, 3, 6, 9, 18, 5
Offset: 1
Triangle begins:
[1];
[1, 2], [1];
[1, 3], [1, 2], [2];
[1, 2, 4], [1, 3], [2, 4], [3];
[1, 5], [1, 2, 4], [2, 6], [3, 6], [5];
[...
The row sums of triangle give A066186.
Written as an irregular tetrahedron the first five slices are:
1;
-----
1, 2,
1;
-----
1, 3,
1, 2,
2;
--------
1, 2, 4,
1, 3,
2, 4,
3;
--------
1, 5,
1, 2, 4,
2, 6,
3, 6,
5;
--------
The row sums of tetrahedron give A339106.
The slices of the tetrahedron appear in the following table formed by four zones shows the correspondence between divisor and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| |
| I | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| N | | * | * * | * * * | * * * * | * * * * * |
| K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
| |---------|-----|-------|---------|-----------|-------------|
| | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| |---------|-----|-------|---------|-----------|-------------|
| D | A027750 | | | 1 | 1 2 | 1 3 |
| I | A027750 | | | 1 | 1 2 | 1 3 |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A027750 | | | | 1 | 1 2 |
| S | A027750 | | | | 1 | 1 2 |
| O | A027750 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
| C | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| O | - | | | 2 | 2 4 | 2 6 |
| N | - | | | | 3 | 3 6 |
| D | - | | | | | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
The lower zone is a condensed version of the "divisors" zone.
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A245095,
A221649,
A221650,
A237593,
A302246,
A302247,
A336811,
A336812,
A337209,
A338156,
A339106,
A339258,
A339278,
A339304,
A340061.
A340423
Irregular triangle read by rows T(n,k) in which row n has length A000041(n-1) and every column k is A024916, n >= 1, k >= 1.
Original entry on oeis.org
1, 4, 8, 1, 15, 4, 1, 21, 8, 4, 1, 1, 33, 15, 8, 4, 4, 1, 1, 41, 21, 15, 8, 8, 4, 4, 1, 1, 1, 1, 56, 33, 21, 15, 15, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 87, 56, 41, 33, 33, 21, 21, 15, 15, 15, 15, 8, 8, 8, 8
Offset: 1
Triangle begins:
1;
4;
8, 1;
15, 4, 1;
21, 8, 4, 1, 1;
33, 15, 8, 4, 4, 1, 1;
41, 21, 15, 8, 8, 4, 4, 1, 1, 1, 1;
56, 33, 21, 15, 15, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1;
69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1;
...
For n = 9 the length of row 9 is A000041(9-1) = 22.
From _Omar E. Pol_, Jan 08 2022: (Start)
For n = 9 the lateral view and top view of the tower described in A221529 look like as shown below:
_
22 1 | |
21 1 | |
20 1 | |
19 1 | |
18 1 | |
17 1 | |
16 1 |_|_
15 4 | |
14 4 | |
13 4 | |
12 4 |_ _|_
11 8 | | |
10 8 | | |
9 8 | | |
8 8 |_ _|_|_
7 15 | | |
6 15 |_ _ _| |_
5 21 | | |
4 21 |_ _ _|_ _|_
3 33 |_ _ _ _| | |_
2 41 |_ _ _ _|_|_ _|_ _
1 69 |_ _ _ _ _|_ _|_ _|
.
Level Row 9 Lateral view
k T(9,k) of the tower
.
_ _ _ _ _ _ _ _ _
|_| | | | | | | |
|_ _|_| | | | | |
|_ _| _|_| | | |
|_ _ _| _|_| |
|_ _ _| _| _ _|
|_ _ _ _| |
|_ _ _ _| _ _|
| |
|_ _ _ _ _|
.
Top view
of the tower
.
For n = 9 and k = 1 there are 69 cubic cells in the level 1 starting from the base of the tower, so T(9,1) = 69.
For n = 9 and k = 22 there is only one cubic cell in the level 22 (the top) of the tower, so T(9,22) = 1.
The volume of the tower (also the total number of cubic cells) represents the 9th term of the convolution of A000203 and A000041 hence it's equal to A066186(9) = 270, equaling the sum of the 9th row of triangle. (End)
The length of the m-th block in row n is
A187219(m), m >= 1.
Cf.
A000203,
A024916,
A196020,
A221529,
A236104,
A235791,
A237270,
A237271,
A237593,
A339278,
A262626,
A336811,
A338156,
A340035,
A341149,
A346533,
A350333.
-
f(n) = numbpart(n-1);
T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--; ); 1+s; } \\ A336811
g(n) = sum(k=1, n, n\k*k); \\ A024916
row(n) = vector(f(n), k, g(T(n,k))); \\ Michel Marcus, Jan 22 2022
A340584
Irregular triangle read by rows T(n,k) in which row n lists sigma(n) + sigma(n-1) together with the first n - 2 terms of A000203 in reverse order, with T(1,1) = 1, n >= 1.
Original entry on oeis.org
1, 4, 7, 1, 11, 3, 1, 13, 4, 3, 1, 18, 7, 4, 3, 1, 20, 6, 7, 4, 3, 1, 23, 12, 6, 7, 4, 3, 1, 28, 8, 12, 6, 7, 4, 3, 1, 31, 15, 8, 12, 6, 7, 4, 3, 1, 30, 13, 15, 8, 12, 6, 7, 4, 3, 1, 40, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 42, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 38, 28, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1
Offset: 1
Triangle begins:
1;
4;
7, 1;
11, 3, 1;
13, 4, 3, 1;
18, 7, 4, 3, 1;
20, 6, 7, 4, 3, 1;
23, 12, 6, 7, 4, 3, 1;
28, 8, 12, 6, 7, 4, 3, 1;
31, 15, 8, 12, 6, 7, 4, 3, 1;
30, 13, 15, 8, 12, 6, 7, 4, 3, 1;
40, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1;
42, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1;
38, 28, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1;
...
For n = 7, sigma(7) = 1 + 7 = 8 and sigma(6) = 1 + 2 + 3 + 6 = 12, and 8 + 12 = 20, so the first term of row 7 is T(7,1) = 20. The other terms in row 7 are the first five terms of A000203 in reverse order, that is [6, 7, 4, 3, 1] so the 7th row of the triangle is [20, 6, 7, 4, 3, 1].
From _Omar E. Pol_, Jul 11 2021: (Start)
For n = 7 we can see below the top view and the lateral view of the pyramid described in A245092 (with seven levels) and the top view and the lateral view of the tower described in A221529 (with 11 levels).
_
| |
| |
| |
_ |_|_
|_|_ | |
|_ _|_ |_ _|_
|_ _|_|_ | | |
|_ _ _| |_ |_ _|_|_
|_ _ _|_ _|_ |_ _ _| |_
|_ _ _ _| | |_ |_ _ _|_ _|_ _
|_ _ _ _|_|_ _| |_ _ _ _|_|_ _|
.
Figure 1. Figure 2.
Lateral view Lateral view
of the pyramid. of the tower.
.
. _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_| | | | | | | |_| | | | | |
|_ _|_| | | | | |_ _|_| | | |
|_ _| _|_| | | |_ _| _|_| |
|_ _ _| _|_| |_ _ _| _ _|
|_ _ _| _| |_ _ _| _|
|_ _ _ _| | |
|_ _ _ _| |_ _ _ _|
.
Figure 3. Figure 4.
Top view Top view
of the pyramid. of the tower.
.
Both polycubes have the same base which has an area equal to A024916(7) = 41 equaling the sum of the 7th row of triangle.
Note that in the top view of the tower the symmetric representation of sigma(6) and the symmetric representation of sigma(7) appear unified in the level 1 of the structure as shown above in the figure 4 (that is due to the first two partition numbers A000041 are [1, 1]), so T(7,1) = sigma(7) + sigma(6) = 8 + 12 = 20. (End)
The length of row n is
A028310(n-1).
Column 1 gives 1 together with
A092403.
Cf.
A175254 (volume of the pyramid).
-
Table[If[n <= 2, {Total@ #}, Prepend[#2, Total@ #1] & @@ TakeDrop[#, 2]] &@ DivisorSigma[1, Range[n, 1, -1]], {n, 14}] // Flatten (* Michael De Vlieger, Jan 13 2021 *)
Comments