cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A341279 Triangle read by rows: T(n,k) = coefficient of x^n in expansion of (-1 + Product_{j>=1} 1 / (1 + (-x)^j))^k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 3, 3, 4, 0, 1, 0, 1, 4, 6, 4, 5, 0, 1, 0, 2, 5, 9, 10, 5, 6, 0, 1, 0, 2, 8, 13, 16, 15, 6, 7, 0, 1, 0, 2, 9, 21, 26, 25, 21, 7, 8, 0, 1, 0, 2, 12, 27, 44, 45, 36, 28, 8, 9, 0, 1, 0, 3, 15, 40, 63, 80, 71, 49, 36, 9, 10, 0, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2021

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,  1;
  0,  0,  1;
  0,  1,  0,  1;
  0,  1,  2,  0,  1;
  0,  1,  2,  3,  0,  1;
  0,  1,  3,  3,  4,  0,  1;
  0,  1,  4,  6,  4,  5,  0,  1;
  0,  2,  5,  9, 10,  5,  6,  0,  1;
  0,  2,  8, 13, 16, 15,  6,  7,  0,  1;
  0,  2,  9, 21, 26, 25, 21,  7,  8,  0,  1;
  0,  2, 12, 27, 44, 45, 36, 28,  8,  9,  0,  1;
  ...
		

Crossrefs

Main diagonal and lower diagonals give A000012, A000004, A001477, A000217, A000290.
Row sums give A307058.
T(2n,n) gives A341265.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    T:= proc(n, k) option remember;
          `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, g(n)),
          (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Feb 09 2021
  • Mathematica
    T[n_, k_] := SeriesCoefficient[(-1 + 2/QPochhammer[-1, -x])^k, {x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten

Formula

G.f. of column k: (-1 + Product_{j>=1} (1 + x^(2*j-1)))^k.
Sum_{k=0..n} (-1)^(n-k) * T(n,k) = A000009(n).

A047639 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^14 in powers of x.

Original entry on oeis.org

1, -14, 91, -364, 987, -1820, 1897, 754, -8008, 18928, -26845, 19460, 15015, -76272, 141065, -163072, 90727, 99386, -368277, 602616, -643734, 358190, 274547, -1101100, 1801086, -1982330, 1344525, 148316, -2163590, 4032756, -4938843, 4216576
Offset: 14

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(14) )); // G. C. Greubel, Sep 07 2023
    
  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 14):
    seq(a(n), n=14..45);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax=45; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] - 1)^14, {x,0,nmax}], x]//Drop[#, 14] & (* Ilya Gutkovskiy, Feb 07 2021 *)
    With[{k=14}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
  • PARI
    my(x='x+O('x^40)); Vec((eta(-x)-1)^14) \\ Joerg Arndt, Sep 07 2023
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=75; k=14;
    def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
    def A047639_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(k,x) ).list()
    a=A047639_list(m); a[k:] # G. C. Greubel, Sep 07 2023
    

Formula

a(n) = [x^n]( QPochhammer(-x) - 1 )^14. - G. C. Greubel, Sep 07 2023

Extensions

Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021

A047640 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^15 in powers of x.

Original entry on oeis.org

1, -15, 105, -455, 1350, -2793, 3625, -765, -9840, 29120, -48657, 47370, 1680, -111060, 252555, -343526, 267540, 63210, -623510, 1216425, -1495173, 1093210, 166425, -2073645, 3963260, -4864839, 3872295, -618310, -4345470, 9477960, -12611991
Offset: 15

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(15) )); // G. C. Greubel, Sep 07 2023
    
  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 15):
    seq(a(n), n=15..45);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax=45; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] - 1)^15, {x, 0, nmax}], x]//Drop[#, 15] & (* Ilya Gutkovskiy, Feb 07 2021 *)
    With[{k=15}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
  • PARI
    my(x='x+O('x^40)); Vec((eta(-x)-1)^15) \\ Joerg Arndt, Sep 07 2023
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=75; k=15;
    def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
    def A047640_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(k,x) ).list()
    a=A047640_list(m); a[k:] # G. C. Greubel, Sep 07 2023
    

Formula

a(n) = [x^n]( QPochhammer(-x) - 1 )^15. - G. C. Greubel, Sep 07 2023

Extensions

Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021

A047641 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^16 in powers of x.

Original entry on oeis.org

1, -16, 120, -560, 1804, -4128, 6312, -3920, -10530, 42208, -82752, 99584, -39460, -141200, 422568, -673936, 660941, -144720, -938840, 2301568, -3257188, 2916592, -628040, -3492160, 8217536, -11341568, 10408280, -3885040, -7668720, 21033408
Offset: 16

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(16) )); // G. C. Greubel, Sep 07 2023
    
  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 16):
    seq(a(n), n=16..45);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax=45; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] -1)^16, {x,0,nmax}], x]//Drop[#, 16] & (* Ilya Gutkovskiy, Feb 07 2021 *)
    With[{k=16}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
  • PARI
    my(x='x+O('x^40)); Vec((eta(-x)-1)^16) \\ Joerg Arndt, Sep 07 2023
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=75; k=16;
    def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
    def A047641_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(k,x) ).list()
    a=A047641_list(m); a[k:] # G. C. Greubel, Sep 07 2023
    

Formula

a(n) = [x^n]( QPochhammer(-x) - 1 )^16. - G. C. Greubel, Sep 07 2023

Extensions

Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021

A047642 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^17 in powers of x.

Original entry on oeis.org

1, -17, 136, -680, 2363, -5916, 10319, -9656, -8534, 57426, -133076, 190383, -134810, -140148, 657611, -1240116, 1461337, -770917, -1171504, 4061946, -6678161, 7071269, -3376863, -4939180, 15963612, -25098443, 26265408, -14513461, -10810368, 43792034
Offset: 17

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(17) )); // G. C. Greubel, Sep 07 2023
    
  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 17):
    seq(a(n), n=17..46);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax=46; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] - 1)^17, {x, 0, nmax}], x]//Drop[#, 17] & (* Ilya Gutkovskiy, Feb 07 2021 *)
    With[{k=17}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
  • PARI
    my(x='x+O('x^40)); Vec((eta(-x)-1)^17) \\ Joerg Arndt, Sep 07 2023
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=75; k=17;
    def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
    def A047642_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(k,x) ).list()
    a=A047642_list(m); a[k:] # G. C. Greubel, Sep 07 2023
    

Formula

a(n) = [x^n]( QPochhammer(-x) - 1 )^17. - G. C. Greubel, Sep 07 2023

Extensions

Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021

A047643 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^18 in powers of x.

Original entry on oeis.org

1, -18, 153, -816, 3042, -8262, 16098, -19278, -1377, 72556, -203184, 339030, -326961, -53244, 940050, -2147916, 2975391, -2293488, -911369, 6616332, -12906162, 15883884, -10936899, -4660974, 28758849, -52660134, 62518248, -44501988, -7465464, 84565242
Offset: 18

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(18) )); // G. C. Greubel, Sep 07 2023
    
  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 18):
    seq(a(n), n=18..47);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax=47; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] -1)^18, {x,0,nmax}], x]//Drop[#, 18] & (* Ilya Gutkovskiy, Feb 07 2021 *)
    With[{k=18}, Drop[CoefficientList[Series[(QPochhammer[-x]-1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
  • PARI
    my(x='x+O('x^35)); Vec((eta(-x)-1)^18) \\ Joerg Arndt, Sep 07 2023
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=75; k=18;
    def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
    def A047643_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(k,x) ).list()
    a=A047643_list(m); a[k:] # G. C. Greubel, Sep 07 2023
    

Formula

a(n) = [x^n]( QPochhammer(-x) - 1 )^18. - G. C. Greubel, Sep 07 2023

Extensions

Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021

A047644 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^19 in powers of x.

Original entry on oeis.org

1, -19, 171, -969, 3857, -11286, 24206, -34542, 14706, 83011, -294880, 569753, -680694, 220286, 1198672, -3502612, 5661867, -5571579, 791350, 9721976, -23494393, 33415357, -29225230, 2352751, 47086598, -104517176, 140834118, -121255530
Offset: 19

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(19) )); // G. C. Greubel, Sep 07 2023
    
  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 19):
    seq(a(n), n=19..46);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax=46; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] - 1)^19, {x,0,nmax}], x]//Drop[#, 19] & (* Ilya Gutkovskiy, Feb 07 2021 *)
    With[{k=19}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
  • PARI
    my(x='x+O('x^35)); Vec((eta(-x)-1)^19) \\ Joerg Arndt, Sep 07 2023
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=75; k=19;
    def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
    def A047644_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(k,x) ).list()
    a=A047644_list(m); a[k:] # G. C. Greubel, Sep 07 2023
    

Formula

a(n) = [x^n]( QPochhammer(-x) - 1 )^19. - G. C. Greubel, Sep 07 2023

Extensions

Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021

A047646 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^21 in powers of x.

Original entry on oeis.org

1, -21, 210, -1330, 5964, -19929, 50253, -91920, 97965, 51604, -526659, 1389297, -2280320, 2118690, 769065, -7613319, 17220042, -23999430, 18024405, 10748850, -63778953, 124134772, -152793270, 99072120, 71722224, -341062407, 610085721
Offset: 21

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(21) )); // G. C. Greubel, Sep 06 2023
    
  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 21):
    seq(a(n), n=21..47);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax=47; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] -1)^21, {x, 0, nmax}], x]//Drop[#, 21] & (* Ilya Gutkovskiy, Feb 07 2021 *)
    With[{k=21}, Drop[CoefficientList[Series[(QPochhammer[-x] - 1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 06 2023 *)
  • PARI
    my(N=44, x='x+O('x^N)); Vec((eta(-x)-1)^21) \\ Joerg Arndt, Sep 06 2023
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=75; k=21;
    def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
    def A047646_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(k,x) ).list()
    a=A047646_list(m); a[k:] # G. C. Greubel, Sep 06 2023
    

Formula

a(n) = [x^n]( QPochhammer(-x) - 1 )^21. - G. C. Greubel, Sep 06 2023

Extensions

Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021

A047647 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^22 in powers of x.

Original entry on oeis.org

1, -22, 231, -1540, 7293, -25872, 69971, -140822, 183711, -25102, -634480, 2027804, -3817814, 4439116, -919600, -9829270, 27660479, -44779042, 43632974, -1898820, -92518261, 219961214, -313463842, 267448104, 15757973, -547042056, 1173033400
Offset: 22

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=75;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(22) )); // G. C. Greubel, Sep 05 2023
    
  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 22):
    seq(a(n), n=22..48);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax=48; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] - 1)^22, {x, 0, nmax}], x]//Drop[#, 22] & (* Ilya Gutkovskiy, Feb 07 2021 *)
    With[{k=22}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 05 2023 *)
  • PARI
    my(N=55, x='x+O('x^N)); Vec((eta(-x)-1)^22) \\ Michel Marcus, Sep 05 2023
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=75; k=22;
    def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
    def A047647_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(k,x) ).list()
    a=A047647_list(m); a[k:] # G. C. Greubel, Sep 05 2023
    

Formula

a(n) = [x^n]( QPochhammer(-x) - 1 )^22. - G. C. Greubel, Sep 05 2023

Extensions

Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021

A341265 Coefficient of x^(2*n) in (-1 + Product_{k>=1} 1 / (1 + x^k))^n.

Original entry on oeis.org

1, 0, 2, 3, 10, 25, 71, 203, 562, 1650, 4667, 13673, 39427, 115440, 336639, 987628, 2898658, 8529257, 25134200, 74173606, 219207815, 648546314, 1921045953, 5695642513, 16902924883, 50203798050, 149229323544, 443895849894, 1321292939459, 3935377071154, 11728037768186
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, g(n+1),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    Table[SeriesCoefficient[(-1 + 1/QPochhammer[-x, x])^n, {x, 0, 2 n}], {n, 0, 30}]
    A[n_, k_] := A[n, k] = If[n == 0, 1, -k Sum[A[n - j, k] Sum[Mod[d, 2] d, {d, Divisors[j]}], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}]; Table[T[2 n, n], {n, 0, 30}]

Formula

a(n) = A341279(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 3.03044218957412050685579849718626198523346... and c = 0.2319377657497495246637662111041144... - Vaclav Kotesovec, Feb 20 2021
Previous Showing 21-30 of 31 results. Next