A047796 a(n) = Sum_{k=0..n} Stirling1(n,k)^2.
1, 1, 2, 14, 194, 4402, 147552, 6838764, 418389078, 32639603798, 3161107700156, 372023906062756, 52280302234036252, 8645773770675973804, 1661888635268695003484, 367390786215560629372920, 92552610850186107484661670, 26356304249588730696338349990
Offset: 0
Keywords
Links
- Vincenzo Librandi and Vaclav Kotesovec, Table of n, a(n) for n = 0..250 (terms 0..41 from Vincenzo Librandi)
Programs
-
GAP
List([0..20], n-> Sum([0..n], k-> Stirling1(n,k)^2 )); # G. C. Greubel, Aug 07 2019
-
Magma
[(&+[StirlingFirst(n,k)^2: k in [0..n]]): n in [0..10]]; // G. C. Greubel, Aug 07 2019
-
Maple
seq(add(stirling1(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
-
Mathematica
Table[Sum[StirlingS1[n,k]^2,{k,0,n}],{n,0,20}] (* Emanuele Munarini, Jul 04 2011 *)
-
Maxima
makelist(sum(stirling1(n,k)^2,k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
-
PARI
a(n) = sum(k=0, n, stirling(n, k, 1)^2); \\ Michel Marcus, Mar 26 2016
-
Sage
[sum(stirling_number1(n,k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019