cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A047796 a(n) = Sum_{k=0..n} Stirling1(n,k)^2.

Original entry on oeis.org

1, 1, 2, 14, 194, 4402, 147552, 6838764, 418389078, 32639603798, 3161107700156, 372023906062756, 52280302234036252, 8645773770675973804, 1661888635268695003484, 367390786215560629372920, 92552610850186107484661670, 26356304249588730696338349990
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Sum([0..n], k-> Stirling1(n,k)^2 )); # G. C. Greubel, Aug 07 2019
  • Magma
    [(&+[StirlingFirst(n,k)^2: k in [0..n]]): n in [0..10]]; // G. C. Greubel, Aug 07 2019
    
  • Maple
    seq(add(stirling1(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
  • Mathematica
    Table[Sum[StirlingS1[n,k]^2,{k,0,n}],{n,0,20}] (* Emanuele Munarini, Jul 04 2011 *)
  • Maxima
    makelist(sum(stirling1(n,k)^2,k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
    
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1)^2); \\ Michel Marcus, Mar 26 2016
    
  • Sage
    [sum(stirling_number1(n,k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
    

A238261 Decimal expansion of a constant related to A187235.

Original entry on oeis.org

4, 9, 1, 0, 8, 1, 4, 9, 6, 4, 5, 6, 8, 2, 5, 5, 8, 9, 8, 7, 5, 1, 5, 3, 4, 8, 0, 5, 2, 4, 0, 3, 5, 2, 1, 9, 7, 8, 9, 8, 7, 0, 5, 2, 8, 1, 7, 6, 7, 8, 4, 7, 1, 7, 6, 1, 3, 9, 4, 1, 1, 2, 0, 2, 2, 5, 6, 4, 1, 7, 8, 7, 7, 8, 7, 9, 9, 4, 7, 9, 7, 2, 9, 5, 1, 8, 1, 9, 7, 4, 1, 5, 3, 5, 5, 4, 4, 6, 1, 4, 2, 5, 0, 5, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			4.9108149645682558987515348...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[-(2*LambertW[-1,-1/2/Sqrt[E]])^2/(1+2*LambertW[-1,-1/2/Sqrt[E]]), 105]][[1]]

Formula

Equals lim n->infinity (A187235(n)/(n-1)!)^(1/n).
Equals -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)).

A384029 a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^4.

Original entry on oeis.org

1, 0, 6, 180, 7206, 370880, 23477380, 1768061064, 154544373158, 15387101825184, 1719596420272980, 213181689525888600, 29036623040055512332, 4310582688852993653568, 692756995680614782818992, 119830419866883597939018000, 22198322332579642585088580870, 4384714751330840129324051474880
Offset: 0

Views

Author

Seiichi Manyama, May 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(i=0, n, sum(j=0, 3*n-i, sum(k=0, 3*n-i-j, abs(stirling(n, i, 1)*stirling(n, j, 1)*stirling(n, k, 1)*stirling(n, 3*n-i-j-k, 1)))));

Formula

a(n) = Sum_{0<=i, j, k, l<=n and i+j+k+l=3*n} |Stirling1(n,i) * Stirling1(n,j) * Stirling1(n,k) * Stirling1(n,l)|.

A342110 a(n) = Sum_{k=0..n} Stirling2(n,k) * Stirling2(n,n-k).

Original entry on oeis.org

1, 0, 1, 6, 61, 770, 12160, 228382, 4989621, 124262532, 3475892685, 107901412520, 3681266754660, 136918473752216, 5513911474915116, 239034083286873630, 11098790133822288645, 549539910028075555016, 28903562131933534643851, 1609321474965547356327246
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2021

Keywords

Crossrefs

Programs

  • Magma
    [(&+[StirlingSecond(n, k)*StirlingSecond(n, n-k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 03 2021
    
  • Mathematica
    Table[Sum[StirlingS2[n, k]*StirlingS2[n, n-k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 2)*stirling(n, n-k, 2)); \\ Michel Marcus, Feb 28 2021
    
  • Sage
    [sum( stirling_number2(n, k)*stirling_number2(n, n-k) for k in (0..n) ) for n in (0..30)] # G. C. Greubel, Jun 03 2021

Formula

From Vaclav Kotesovec, Feb 28 2021, updated May 25 2025: (Start)
a(n) ~ c * d^n * (n-1)!, where
d = A238258 = -2 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 3.0882773047417401791158400820254382768364448971420138767247...
c = 1/(2*Pi*sqrt((1 + LambertW(-2*exp(-2)))*(3 + LambertW(-2*exp(-2))))) = 0.12826577250734152801558828593238744179869387423941684693208180123477... (End)

A384018 a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^3.

Original entry on oeis.org

1, 0, 3, 63, 1767, 63690, 2822740, 148810032, 9104502015, 634448680884, 49622704133175, 4305280182748875, 410376649359397380, 42633179822414174760, 4794685285831034253660, 580373328155358031572600, 75234419898396217903091151, 10398952352945773993329785448, 1526704288048697734221906020641
Offset: 0

Views

Author

Seiichi Manyama, May 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(i=0, n, sum(j=0, 2*n-i, abs(stirling(n, i, 1)*stirling(n, j, 1)*stirling(n, 2*n-i-j, 1))));

Formula

a(n) = Sum_{0<=i, j, k<=n and i+j+k=2*n} |Stirling1(n,i) * Stirling1(n,j) * Stirling1(n,k)|.

A384027 a(n) = [x^(3*n)] Product_{k=0..n-1} (1 + k*x)^4.

Original entry on oeis.org

1, 0, 0, 0, 1296, 2764800, 8041766400, 34726710251520, 219045033712578816, 1956771788423009992704, 24009126017002632247173120, 393692515265172002272138690560, 8424620140673205407840209386541056, 230472036551670538296109810120063451136, 7917891968134805796965854747528387122954240
Offset: 0

Views

Author

Seiichi Manyama, May 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(i=0, n, sum(j=0, n-i, sum(k=0, n-i-j, abs(stirling(n, i, 1)*stirling(n, j, 1)*stirling(n, k, 1)*stirling(n, n-i-j-k, 1)))));

Formula

a(n) = Sum_{i, j, k, l>=0 and i+j+k+l=n} |Stirling1(n,i) * Stirling1(n,j) * Stirling1(n,k) * Stirling1(n,l)|.

A155826 Triangle T(n, k) = binomial(n, k) + binomial(k*(n-k), n) + 2*(-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k), read by rows.

Original entry on oeis.org

4, 1, 1, 1, 4, 1, 1, 15, 15, 1, 1, 76, 249, 76, 1, 1, 485, 3516, 3516, 485, 1, 1, 3606, 46623, 101354, 46623, 3606, 1, 1, 30247, 617541, 2388107, 2388107, 617541, 30247, 1, 1, 282248, 8416315, 51483931, 91651662, 51483931, 8416315, 282248, 1, 1, 2903049, 119667766, 1071669632, 3021085118, 3021085118, 1071669632, 119667766, 2903049, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 28 2009

Keywords

Examples

			Triangle begins as:
  4;
  1,      1;
  1,      4,       1;
  1,     15,      15,        1;
  1,     76,     249,       76,        1;
  1,    485,    3516,     3516,      485,        1;
  1,   3606,   46623,   101354,    46623,     3606,       1;
  1,  30247,  617541,  2388107,  2388107,   617541,   30247,     1;
  1, 282248, 8416315, 51483931, 91651662, 51483931, 8416315, 282248, 1;
		

Crossrefs

Programs

  • Magma
    A155826:= func< n,k | Binomial(n, k) + Binomial(k*(n-k), n) + 2*(-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k) >;
    [A155826(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 03 2021
    
  • Mathematica
    T[n_, k_]:= Binomial[n, k] + Binomial[k*(n-k), n] + 2*(-1)^n*StirlingS1[n, k]*StirlingS1[n, n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 03 2021 *)
  • Sage
    def A155826(n,k): return binomial(n, k) + binomial(k*(n-k), n) + 2*stirling_number1(n, k)*stirling_number1(n, n-k)
    flatten([[A155826(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 03 2021

Formula

T(n, k) = binomial(n, k) + binomial(k*(n-k), n) + 2*(-1)^n*StirlingS1(n, k) * StirlingS1(n, n-k).
Sum_{k=0..n} T(n, k) = 2^n + 2*342111(n) + Sum_{k=0..n} binomial(k*(n-k), n). - G. C. Greubel, Jun 03 2021

Extensions

Edited by G. C. Greubel, Jun 03 2021

A383880 a(n) = [x^n] 1/Product_{k=0..n-1} (1 - k*x)^2.

Original entry on oeis.org

1, 0, 3, 72, 2307, 95060, 4817990, 290523576, 20333487251, 1621036680120, 145057745669850, 14399349523416000, 1570425994090538574, 186674663305762642296, 24021930409036829669036, 3327140929951823209016400, 493515678917684006649451651, 78054583374364036172432641200
Offset: 0

Views

Author

Seiichi Manyama, May 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[StirlingS2[n + k - 1, n - 1]*StirlingS2[2*n - k - 1, n - 1], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 14 2025 *)
  • PARI
    a(n) = polcoef(1/prod(k=0, n-1, 1-k*x+x*O(x^n))^2, n);

Formula

a(n) = Sum_{k=0..n} Stirling2(n+k-1,n-1) * Stirling2(2*n-k-1,n-1) for n > 0.
a(n) ~ 3^(3*n - 3/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * 2^(2*n - 1/2) * exp(n) * (3 - 2*w)^n * w^(2*n - 3/2)), where w = -LambertW(-3*exp(-3/2)/2). - Vaclav Kotesovec, May 14 2025

A384026 a(n) = [x^(2*n)] Product_{k=0..n-1} (1 + k*x)^3.

Original entry on oeis.org

1, 0, 0, 8, 1188, 240480, 68630824, 26730127872, 13715719388784, 8994742935058880, 7351374493516431744, 7333037983443263351040, 8772990646534399559904256, 12403600039078715891159873280, 20464777911173655904724421045504, 38976211807455406964301439206318080
Offset: 0

Views

Author

Seiichi Manyama, May 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(i=0, n, sum(j=0, n-i, abs(stirling(n, i, 1)*stirling(n, j, 1)*stirling(n, n-i-j, 1))));

Formula

a(n) = Sum_{i, j, k>=0 and i+j+k=n} |Stirling1(n,i) * Stirling1(n,j) * Stirling1(n,k)|.

A155742 Triangle T(n, k) = (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k), read by rows.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 6, 6, 0, 0, 36, 121, 36, 0, 0, 240, 1750, 1750, 240, 0, 0, 1800, 23290, 50625, 23290, 1800, 0, 0, 15120, 308700, 1193640, 1193640, 308700, 15120, 0, 0, 141120, 4207896, 25738720, 45819361, 25738720, 4207896, 141120, 0, 0, 1451520, 59832864, 535810464, 1510458516, 1510458516, 535810464, 59832864, 1451520, 0
Offset: 0

Views

Author

Roger L. Bagula, Jan 26 2009

Keywords

Examples

			Triangle begins as:
  1;
  0,      0;
  0,      1,       0;
  0,      6,       6,        0;
  0,     36,     121,       36,        0;
  0,    240,    1750,     1750,      240,        0;
  0,   1800,   23290,    50625,    23290,     1800,       0;
  0,  15120,  308700,  1193640,  1193640,   308700,   15120,      0;
  0, 141120, 4207896, 25738720, 45819361, 25738720, 4207896, 141120, 0;
		

Crossrefs

Cf. A048994, A342111 (row sums).

Programs

  • Magma
    A155742:= func< n,k | (-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k) >;
    [A155742(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 05 2021
    
  • Mathematica
    T[n_, k_]:= (-1)^n*StirlingS1[n, k]*StirlingS1[n, n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 05 2021 *)
  • Sage
    def A155742(n,k): return stirling_number1(n,k)*stirling_number1(n, n-k)
    flatten([[A155742(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021

Formula

T(n, k) = (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k).
Sum_{k=0..n} T(n, k) = A342111(n). - G. C. Greubel, Jun 05 2021

Extensions

Edited by G. C. Greubel, Jun 05 2021
Showing 1-10 of 13 results. Next