cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 99 results. Next

A179009 Number of maximally refined partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 2, 3, 5, 1, 3, 2, 3, 5, 7, 2, 5, 3, 4, 6, 7, 11, 3, 8, 5, 6, 6, 8, 11, 15, 7, 13, 9, 9, 9, 10, 12, 16, 22, 11, 20, 15, 17, 14, 15, 16, 18, 24, 30, 18, 30, 26, 28, 22, 27, 21, 25, 27, 33, 42, 36, 45, 43, 46, 38, 44, 33, 43, 36, 44, 47, 60, 46, 66, 64, 70, 63, 72, 61, 69, 60, 63, 58, 69, 80
Offset: 0

Views

Author

David S. Newman, Jan 03 2011

Keywords

Comments

Let a_1,a_2,...,a_k be a partition of n into distinct parts. We say that this partition can be refined if one of the summands, say a_i can be replaced with two numbers whose sum is a_i and the resulting partition is a partition into distinct parts. For example, the partition 5+2 can be refined because 5 can be replaced by 4+1 to give 4+2+1. If a partition into distinct parts cannot be refined we say that it is maximally refined.
The value of a(0) is taken to be 1 as is often done when considering partitions (also, the empty partition cannot be refined).
This sequence was suggested by Moshe Shmuel Newman.
From Gus Wiseman, Jun 07 2025: (Start)
Given any strict partition, the following are equivalent:
1) The parts are maximally refined.
2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
3) No part is a sum of distinct non-parts.
(End)

Examples

			a(11)=2 because there are two partitions of 11 which are maximally refined, namely 6+4+1 and 5+3+2+1.
From _Joerg Arndt_, Apr 23 2023: (Start)
The 15 maximally refined partitions of 35 are:
   1:    [ 1 2 3 4 5 6 14 ]
   2:    [ 1 2 3 4 5 7 13 ]
   3:    [ 1 2 3 4 5 8 12 ]
   4:    [ 1 2 3 4 5 9 11 ]
   5:    [ 1 2 3 4 6 7 12 ]
   6:    [ 1 2 3 4 6 8 11 ]
   7:    [ 1 2 3 4 6 9 10 ]
   8:    [ 1 2 3 4 7 8 10 ]
   9:    [ 1 2 3 5 6 7 11 ]
  10:    [ 1 2 3 5 6 8 10 ]
  11:    [ 1 2 3 5 7 8 9 ]
  12:    [ 1 2 4 5 6 7 10 ]
  13:    [ 1 2 4 5 6 8 9 ]
  14:    [ 1 3 4 5 6 7 9 ]
  15:    [ 2 3 4 5 6 7 8 ]
(End)
		

Crossrefs

For subsets instead of partitions we have A326080, complement A384350.
These partitions are ranked by A383707, apparently positions of 1 in A383706.
The strict complement is A384318 (strict partitions that can be refined).
This is the strict version of A384392, ranks A384320, complement apparently A384321.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,Total/@nonsets[#]]=={}&]],{n,0,15}] (* Gus Wiseman, Jun 09 2025 *)

Extensions

More terms from Joerg Arndt, Jan 04 2011

A383710 Number of integer partitions of n such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 10, 15, 22, 29, 42, 59, 79, 108, 140, 190, 247, 324, 417, 541
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

Also the number of integer partitions of n whose normal multiset (in which i appears y_i times) is not a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is not counted under a(6).
The a(2) = 1 through a(8) = 15 partitions:
  (11)  (111)  (22)    (221)    (222)     (322)      (332)
               (211)   (311)    (411)     (331)      (422)
               (1111)  (2111)   (2211)    (511)      (611)
                       (11111)  (3111)    (2221)     (2222)
                                (21111)   (3211)     (3221)
                                (111111)  (4111)     (3311)
                                          (22111)    (4211)
                                          (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

These partitions have Heinz numbers A382912.
The number of such families for each Heinz number is A383706.
The complement is counted by A383708, ranks A382913.
Without ones we have A383711, complement A383533.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], pof[#]=={}&]], {n,0,15}]

A382879 Positions of 0 in A382857 (permutations of prime indices with equal run-lengths).

Original entry on oeis.org

24, 40, 48, 54, 56, 80, 88, 96, 104, 112, 135, 136, 152, 160, 162, 176, 184, 189, 192, 208, 224, 232, 240, 248, 250, 272, 288, 296, 297, 304, 320, 328, 336, 344, 351, 352, 368, 375, 376, 384, 405, 416, 424, 448, 459, 464, 472, 480, 486, 488, 496, 513, 528, 536
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
   24: {1,1,1,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   80: {1,1,1,1,3}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
  104: {1,1,1,6}
  112: {1,1,1,1,4}
  135: {2,2,2,3}
  136: {1,1,1,7}
  152: {1,1,1,8}
  160: {1,1,1,1,1,3}
		

Crossrefs

For distinct instead of equal the complement is A351294, counted by A239455.
For distinct instead of equal we have A351295, counted by A351293.
For run-sums instead of run-lengths we have A383100, zeros of A382877, distinct A382876.
Positions of 0 in A382857 (firsts A382878), by signature A382858 (distinct A382773).
For prime signature instead of prime indices we have A382914.
Partitions of this type are counted by A382915.
The complement is counted by A383013.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798.
A297770 counts distinct runs in binary expansion.
A164707 lists numbers whose binary form has equal runs of ones, distinct A328592.
A304442 counts partitions with equal run-sums, ranks A353833.
A329739 counts compositions with distinct run-lengths, ranks A351290.
A353744 ranks compositions with equal run-lengths, distinct A351596 (complement A351291).

Programs

  • Mathematica
    Select[Range[100], Select[Permutations[Join@@ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]=={}&]

A382912 Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has no permutation with all distinct run-lengths.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 153, 156, 160, 162, 164
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms, prime indices, and corresponding multisets begin:
   4:       {1,1} {1,2}
   8:     {1,1,1} {1,2,3}
   9:       {2,2} {1,1,2,2}
  12:     {1,1,2} {1,1,2,3}
  16:   {1,1,1,1} {1,2,3,4}
  18:     {1,2,2} {1,1,2,2,3}
  20:     {1,1,3} {1,1,1,2,3}
  24:   {1,1,1,2} {1,1,2,3,4}
  27:     {2,2,2} {1,1,2,2,3,3}
  28:     {1,1,4} {1,1,1,1,2,3}
  32: {1,1,1,1,1} {1,2,3,4,5}
  36:   {1,1,2,2} {1,1,2,2,3,4}
  40:   {1,1,1,3} {1,1,1,2,3,4}
  44:     {1,1,5} {1,1,1,1,1,2,3}
  45:     {2,2,3} {1,1,1,2,2,3,3}
  48: {1,1,1,1,2} {1,1,2,3,4,5}
  50:     {1,3,3} {1,1,1,2,2,2,3}
  52:     {1,1,6} {1,1,1,1,1,1,2,3}
		

Crossrefs

The Look-and-Say partition is ranked by A048767, listed by A381440.
Look-and-Say partitions are counted by A239455, ranks A351294.
Non-Look-and-Say partitions are counted by A351293.
For prime indices instead of signature we have A351295, conjugate A381433.
The complement is A382913.
For equal instead of distinct run-lengths we have A382914, see A382858, A382879, A382915.
A056239 adds up prime indices, row sums of A112798.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A381431 lists the section-sum partition of n, ranks A381436, union A381432.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{}, Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_} :> Table[PrimePi[p],{k}]]]]];
    lasQ[y_]:=Select[Permutations[y], UnsameQ@@Length/@Split[#]&]!={};
    Select[Range[100],Not@*lasQ@*nrmptn]

A382913 Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has a permutation with all distinct run-lengths.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms, prime indices, and corresponding multisets begin:
   1:    {} {}
   2:   {1} {1}
   3:   {2} {1,1}
   5:   {3} {1,1,1}
   6: {1,2} {1,1,2}
   7:   {4} {1,1,1,1}
  10: {1,3} {1,1,1,2}
  11:   {5} {1,1,1,1,1}
  13:   {6} {1,1,1,1,1,1}
  14: {1,4} {1,1,1,1,2}
  15: {2,3} {1,1,1,2,2}
  17:   {7} {1,1,1,1,1,1,1}
  19:   {8} {1,1,1,1,1,1,1,1}
  21: {2,4} {1,1,1,1,2,2}
  22: {1,5} {1,1,1,1,1,2}
  23:   {9} {1,1,1,1,1,1,1,1,1}
  25: {3,3} {1,1,1,2,2,2}
  26: {1,6} {1,1,1,1,1,1,2}
		

Crossrefs

Look-and-Say partitions are counted by A239455, ranks A351294.
Non-Look-and-Say partitions are counted by A351293, ranks A351295.
For prime indices instead of signature we have A351294, conjugate A381432.
The Look-and-Say partition of n is listed by A381440, rank A048767.
The complement is A382912.
For equal run-lengths we have the complement of A382914, see A382858, A382879, A382915.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A381431 ranks section-sum partition, listed by A381436.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&, If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_} :> Table[PrimePi[p],{k}]]]]];
    lasQ[y_]:=Select[Permutations[y], UnsameQ@@Length/@Split[#]&]!={};
    Select[Range[100],lasQ@*nrmptn]

A351292 Number of patterns of length n with all distinct run-lengths.

Original entry on oeis.org

1, 1, 1, 5, 5, 9, 57, 61, 109, 161, 1265, 1317, 2469, 3577, 5785, 43901, 47165, 86337, 127665, 204853, 284197, 2280089, 2398505, 4469373, 6543453, 10570993, 14601745, 22502549, 159506453, 171281529, 314077353, 462623821, 742191037, 1031307185, 1580543969, 2141246229
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.

Examples

			The a(1) = 1 through a(5) = 9 patterns:
  (1)  (1,1)  (1,1,1)  (1,1,1,1)  (1,1,1,1,1)
              (1,1,2)  (1,1,1,2)  (1,1,1,1,2)
              (1,2,2)  (1,2,2,2)  (1,1,1,2,2)
              (2,1,1)  (2,1,1,1)  (1,1,2,2,2)
              (2,2,1)  (2,2,2,1)  (1,2,2,2,2)
                                  (2,1,1,1,1)
                                  (2,2,1,1,1)
                                  (2,2,2,1,1)
                                  (2,2,2,2,1)
The a(6) = 57 patterns grouped by sum:
  111111  111112  111122  112221  111223  111233  112333  122333
          111211  111221  122211  111322  111332  113332  133322
          112111  122111  211122  112222  112223  122233  221333
          211111  221111  221112  211222  113222  133222  223331
                                  221113  122222  211333  333122
                                  222112  211133  222133  333221
                                  222211  221222  222331
                                  223111  222113  233311
                                  311122  222122  331222
                                  322111  222221  332221
                                          222311  333112
                                          233111  333211
                                          311222
                                          322211
                                          331112
                                          332111
		

Crossrefs

The version for runs instead of run-lengths is A351200.
A000670 counts patterns, ranked by A333217.
A005649 counts anti-run patterns, complement A069321.
A005811 counts runs in binary expansion.
A032011 counts patterns with distinct multiplicities.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A060223 counts Lyndon patterns, necklaces A019536, aperiodic A296975.
A131689 counts patterns by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A165413 counts distinct run-lengths in binary expansion, runs A297770.
A345194 counts alternating patterns, up/down A350354.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351202 = permutations of prime factors.
- A351638 = word structures.
Row sums of A350824.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],UnsameQ@@Length/@Split[#]&]],{n,0,6}]
  • PARI
    P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))}
    R(u,k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]}
    seq(n)={my(u=P(n), c=poldegree(u[#u])); concat([1], sum(k=1, c, R(u, k)*sum(r=k, c, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 11 2022

Formula

From Andrew Howroyd, Feb 12 2022: (Start)
a(n) = Sum_{k=1..n} R(n,k)*(Sum_{r=k..n} binomial(r, k)*(-1)^(r-k)), where R(n,k) = Sum_{j=1..floor((sqrt(8*n+1)-1)/2)} k*(k-1)^(j-1) * j! * A008289(n,j).
G.f.: 1 + Sum_{r>=1} Sum_{k=1..r} R(k,x) * binomial(r, k)*(-1)^(r-k), where R(k,x) = Sum_{j>=1} k*(k-1)^(j-1) * j! * [y^j](Product_{k>=1} 1 + y*x^k).
(End)

Extensions

Terms a(10) and beyond from Andrew Howroyd, Feb 11 2022

A382771 Number of ways to permute the prime indices of n so that the run-lengths are all different.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 1, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 2, 0, 0, 1, 2, 1, 0, 2, 2, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 07 2025

Keywords

Comments

The first x with a(x) > 0 but A382857(x) > 1 is a(216) = 4, A382857(216) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The a(96) = 4 permutations are:
  (1,1,1,1,1,2)
  (1,1,1,2,1,1)
  (1,1,2,1,1,1)
  (2,1,1,1,1,1)
The a(216) = 4 permutations are:
  (1,1,2,2,2,1)
  (1,2,2,2,1,1)
  (2,1,1,1,2,2)
  (2,2,1,1,1,2)
The a(360) = 6 permutations are:
  (1,1,1,2,2,3)
  (1,1,1,3,2,2)
  (2,2,1,1,1,3)
  (2,2,3,1,1,1)
  (3,1,1,1,2,2)
  (3,2,2,1,1,1)
		

Crossrefs

Positions of 1 are A000961.
Positions of positive terms are A351294, conjugate A381432.
Positions of 0 are A351295, conjugate A381433, equal A382879.
Sorted positions of first appearances are A382772, equal A382878.
For prescribed signature we have A382773, equal A382858.
The restriction to factorials is A382774, equal A335407.
For equal instead of distinct run-lengths we have A382857.
For run-sums instead of run-lengths we have A382876, equal A382877.
Positions of terms > 1 are A383113.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A239455 counts Look-and-Say partitions, complement A351293.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]],UnsameQ@@Length/@Split[#]&]],{n,30}]

Formula

a(A181821(n)) = a(A304660(n)) = A382773(n).
a(n!) = A382774(n).

A383512 Heinz numbers of conjugate Wilf partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85
Offset: 1

Views

Author

Gus Wiseman, May 13 2025

Keywords

Comments

First differs from A364347 in having 130 and lacking 110.
First differs from A381432 in lacking 65 and 133.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
     1: {}           17: {7}            35: {3,4}
     2: {1}          19: {8}            37: {12}
     3: {2}          20: {1,1,3}        38: {1,8}
     4: {1,1}        22: {1,5}          39: {2,6}
     5: {3}          23: {9}            40: {1,1,1,3}
     7: {4}          25: {3,3}          41: {13}
     8: {1,1,1}      26: {1,6}          43: {14}
     9: {2,2}        27: {2,2,2}        44: {1,1,5}
    10: {1,3}        28: {1,1,4}        45: {2,2,3}
    11: {5}          29: {10}           46: {1,9}
    13: {6}          31: {11}           47: {15}
    14: {1,4}        32: {1,1,1,1,1}    49: {4,4}
    15: {2,3}        33: {2,5}          50: {1,3,3}
    16: {1,1,1,1}    34: {1,7}          51: {2,7}
		

Crossrefs

Partitions of this type are counted by A098859.
The conjugate version is A130091, complement A130092.
Including differences of 0 gives A325367, counted by A325324.
The strict case is A325388, counted by A320348.
The complement is A383513, counted by A336866.
Also requiring distinct multiplicities gives A383532, counted by A383507.
These are the positions of strict rows in A383534, or squarefree numbers in A383535.
A000040 lists the primes, differences A001223.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A325349 counts partitions with distinct augmented differences, ranks A325366.
A383530 counts partitions that are not Wilf or conjugate Wilf, ranks A383531.
A383709 counts Wilf partitions with distinct augmented differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], UnsameQ@@DeleteCases[Differences[Prepend[prix[#],0]],0]&]

A383013 Number of integer partitions of n having a permutation with all equal run-lengths.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 18, 21, 31, 38, 56, 67, 94, 121, 162, 199, 265, 330, 438, 543, 693, 859, 1103, 1353, 1702, 2097, 2619, 3194, 3972, 4821, 5943, 7206, 8796, 10632, 12938, 15536, 18794, 22539, 27133, 32374, 38827, 46175, 55134, 65421, 77751, 91951, 109011, 128482
Offset: 0

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

A partition of n counts towards a(n) if and only if #p + g >= 2*L where #p is the number of parts counted with multiplicity of the partition, g is the gcd of all the frequencies of every distinct part and L is the largest frequency of a part. - David A. Corneth, Apr 27 2025

Examples

			The partition (2,2,1,1,1,1) has permutation (1,1,2,2,1,1) with equal run-lengths (2,2,2) so is counted under a(8).
The a(1) = 1 through a(8) = 18 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (221)    (51)      (61)       (62)
                    (1111)  (311)    (222)     (322)      (71)
                            (11111)  (321)     (331)      (332)
                                     (411)     (421)      (422)
                                     (2211)    (511)      (431)
                                     (111111)  (3211)     (521)
                                               (22111)    (611)
                                               (1111111)  (2222)
                                                          (3221)
                                                          (3311)
                                                          (4211)
                                                          (22211)
                                                          (32111)
                                                          (221111)
                                                          (11111111)
		

Crossrefs

For distinct instead of equal run-lengths we have A239455, ranked by A351294.
The complement for distinct run-lengths is A351293, ranked by A351295.
The complement is counted by A382915, ranked by A382879, by signature A382914.
A000041 counts integer partitions, strict A000009.
A304442 counts partitions with equal run-sums, ranks A353833.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A382857 counts permutations of prime indices with equal run-lengths, firsts A382878.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#], SameQ@@Length/@Split[#]&]!={}&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383513 Heinz numbers of non conjugate Wilf partitions.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246
Offset: 1

Views

Author

Gus Wiseman, May 13 2025

Keywords

Comments

First differs from A381433 in having 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   12: {1,1,2}
   18: {1,2,2}
   21: {2,4}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   65: {3,6}
   66: {1,2,5}
   70: {1,3,4}
   72: {1,1,1,2,2}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A336866.
The conjugate version is A130092, complement A130091.
Including differences of 0 gives complement of A325367, counted by A325324.
The strict case is the complement of A325388, counted by A320348.
The complement is A383512, counted by A098859.
Also forbidding distinct multiplicities gives A383531, counted by A383530.
These are positions of non-strict rows in A383534, or nonsquarefree numbers in A383535.
A000040 lists the primes, differences A001223.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A383507 counts partitions that are Wilf and conjugate Wilf, ranks A383532.
A383709 counts Wilf partitions with distinct augmented differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!UnsameQ@@DeleteCases[Differences[Prepend[prix[#],0]],0]&]
Previous Showing 11-20 of 99 results. Next