cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A356234 Irregular triangle read by rows where row n is the ordered factorization of n into maximal gapless divisors.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 2, 5, 11, 12, 13, 2, 7, 15, 16, 17, 18, 19, 4, 5, 3, 7, 2, 11, 23, 24, 25, 2, 13, 27, 4, 7, 29, 30, 31, 32, 3, 11, 2, 17, 35, 36, 37, 2, 19, 3, 13, 8, 5, 41, 6, 7, 43, 4, 11, 45, 2, 23, 47, 48, 49, 2, 25, 3, 17, 4, 13, 53, 54, 5, 11, 8
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2022

Keywords

Comments

Row-products are the positive integers 1, 2, 3, ...

Examples

			The first 16 rows:
   1 =
   2 = 2
   3 = 3
   4 = 4
   5 = 5
   6 = 6
   7 = 7
   8 = 8
   9 = 9
  10 = 2 * 5
  11 = 11
  12 = 12
  13 = 13
  14 = 2 * 7
  15 = 15
  16 = 16
The factorization of 18564 is 18564 = 12*7*221, so row 18564 is {12,7,221}.
		

Crossrefs

Row-lengths are A287170, firsts A066205, even bisection A356229.
Applying bigomega to all parts gives A356226, statistics A356227-A356232.
A001055 counts factorizations.
A001221 counts distinct prime factors, sum A001414.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@#&/@Split[primeMS[n],#1>=#2-1&],{n,100}]

A356228 Greatest size of a gapless submultiset of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 3, 1, 5, 1, 1, 2, 4, 1, 1, 1, 3, 1, 2, 1, 2, 3, 1, 1, 5, 2, 2, 1, 2, 1, 4, 1, 3, 1, 1, 1, 4, 1, 1, 2, 6, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 3, 2, 2, 2, 1, 4, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless intervals: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 700 are {1,1,3,3,4}, with maximal gapless submultisets {1,1}, {3,3,4}, so a(700) = 3.
The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 3.
		

Crossrefs

Positions of first appearances are A000079.
The maximal gapless submultisets are counted by A287170, firsts A066205.
These are the row-maxima of A356226, firsts A356232.
The smallest instead of greatest size is A356227.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.
A356069 counts gapless divisors.
A356224 counts even gapless divisors, complement A356225.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Max@@Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

a(n) = A333766(A356230(n)).
a(n) = A061395(A356231(n)).

A356603 Position in A356226 of first appearance of the n-th composition in standard order (row n of A066099).

Original entry on oeis.org

1, 2, 4, 10, 8, 20, 50, 110, 16, 40, 100, 220, 250, 550, 1210, 1870, 32, 80, 200, 440, 500, 1100, 2420, 3740, 1250, 2750, 6050, 9350, 13310, 20570, 31790, 43010, 64, 160, 400, 880, 1000, 2200, 4840, 7480, 2500, 5500, 12100, 18700, 26620, 41140, 63580, 86020
Offset: 0

Views

Author

Gus Wiseman, Aug 30 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The image consists of all numbers whose prime indices are odd and cover an initial interval of odd positive integers.

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
     10: {1,3}
      8: {1,1,1}
     20: {1,1,3}
     50: {1,3,3}
    110: {1,3,5}
     16: {1,1,1,1}
     40: {1,1,1,3}
    100: {1,1,3,3}
    220: {1,1,3,5}
    250: {1,3,3,3}
    550: {1,3,3,5}
   1210: {1,3,5,5}
   1870: {1,3,5,7}
		

Crossrefs

See link for sequences related to standard compositions.
The partitions with these Heinz numbers are counted by A053251.
A subset of A066208 (numbers with all odd prime indices).
Up to permutation, these are the positions of first appearances of rows in A356226. Other statistics are:
- length: A287170, firsts A066205
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
The sorted version is A356232.
An ordered version is counted by A356604.
A001221 counts distinct prime factors, sum A001414.
A073491 lists numbers with gapless prime indices, complement A073492.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stcinv[q_]:=1/2 Total[2^Accumulate[Reverse[q]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    sq=stcinv/@Table[Length/@Split[primeMS[n],#1>=#2-1&],{n,1000}];
    Table[Position[sq,k][[1,1]],{k,0,mnrm[Rest[sq]]}]

A356227 Smallest size of a maximal gapless submultiset of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 2, 4, 1, 3, 1, 1, 1, 1, 1, 4, 2, 1, 3, 1, 1, 3, 1, 5, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 1.
		

Crossrefs

Positions of first appearances are A000079.
The maximal gapless submultisets are counted by A287170, firsts A066205.
These are the row-minima of A356226, firsts A356232.
The greatest instead of smallest size is A356228.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.
A356224 counts even gapless divisors, complement A356225.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Min@@Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

a(n) = A333768(A356230(n)).
a(n) = A055396(A356231(n)).

A356841 Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 50, 52, 53, 54, 55, 58, 59, 61, 62, 63, 64, 68, 72, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 101
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and their corresponding standard compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   6: (1,2)
   7: (1,1,1)
   8: (4)
  10: (2,2)
  11: (2,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  16: (5)
  18: (3,2)
  20: (2,3)
  21: (2,2,1)
		

Crossrefs

See link for sequences related to standard compositions.
An unordered version is A073491, complement A073492.
These compositions are counted by A107428.
The complement is A356842.
The non-initial case is A356843, unordered A356845.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],nogapQ[stc[#]]&]

A356845 Odd numbers with gapless prime indices.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 35, 37, 41, 43, 45, 47, 49, 53, 59, 61, 67, 71, 73, 75, 77, 79, 81, 83, 89, 97, 101, 103, 105, 107, 109, 113, 121, 125, 127, 131, 135, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 175, 179, 181, 191
Offset: 1

Views

Author

Gus Wiseman, Sep 03 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence is gapless if it covers an interval of positive integers.

Examples

			The terms together with their prime indices begin:
    1: {}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   15: {2,3}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   35: {3,4}
   37: {12}
   41: {13}
   43: {14}
		

Crossrefs

Consists of the odd terms of A073491.
These partitions are counted by A264396.
The strict case is A294674, counted by A136107.
The version for compositions is A356843, counted by A251729.
A001221 counts distinct prime factors, sum A001414.
A056239 adds up prime indices, row sums of A112798, lengths A001222.
A356069 counts gapless divisors, initial A356224 (complement A356225).
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];
    Select[Range[1,100,2],nogapQ[primeMS[#]]&]

A356941 Number of multiset partitions of integer partitions of n such that all blocks are gapless.

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 49, 88, 166, 297, 534, 932, 1635, 2796, 4782, 8060, 13521, 22438, 37080, 60717, 98979, 160216, 258115, 413382, 659177, 1045636, 1651891, 2597849, 4069708, 6349677, 9871554, 15290322, 23604794, 36318256, 55705321, 85177643, 129865495
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2022

Keywords

Comments

A multiset is gapless if it covers an interval of positive integers. For example, {2,3,3,4} is gapless but {1,1,3,3} is not.

Examples

			The a(1) = 1 through a(4) = 13 multiset partitions:
  {{1}}  {{2}}      {{3}}          {{4}}
         {{1,1}}    {{1,2}}        {{2,2}}
         {{1},{1}}  {{1,1,1}}      {{1,1,2}}
                    {{1},{2}}      {{1},{3}}
                    {{1},{1,1}}    {{2},{2}}
                    {{1},{1},{1}}  {{1,1,1,1}}
                                   {{1},{1,2}}
                                   {{2},{1,1}}
                                   {{1},{1,1,1}}
                                   {{1,1},{1,1}}
                                   {{1},{1},{2}}
                                   {{1},{1},{1,1}}
                                   {{1},{1},{1},{1}}
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A001055 counts factorizations.
A011782 counts multisets covering an initial interval.
A356069 counts gapless divisors, initial A356224 (complement A356225).
Gapless multisets are counted by A034296, ranked by A073491.
Other types: A356233, A356942, A356943, A356944.
Other conditions: A001970, A006171, A007294, A089259, A107742, A356932.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And@@nogapQ/@#&]],{n,0,5}]
  • PARI
    \\ Here G(n) gives A034296 as vector
    G(N) = Vec(sum(n=1, N, x^n/(1-x^n) * prod(k=1, n-1, 1+x^k+O(x*x^(N-n))) ));
    seq(n) = {my(u=G(n)); Vec(1/prod(k=1, n-1, (1 - x^k + O(x*x^n))^u[k])) } \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: 1/Product_{k>=1} (1 - x^k)^A034296(k). - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 30 2022

A356843 Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless) but contains no 1's.

Original entry on oeis.org

2, 4, 8, 10, 16, 18, 20, 32, 36, 42, 64, 68, 72, 74, 82, 84, 128, 136, 146, 148, 164, 170, 256, 264, 272, 274, 276, 290, 292, 296, 298, 324, 328, 330, 338, 340, 512, 528, 548, 580, 584, 586, 594, 596, 658, 660, 676, 682, 1024, 1040, 1056, 1092, 1096, 1098
Offset: 1

Views

Author

Gus Wiseman, Sep 01 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their corresponding standard compositions begin:
    2: (2)
    4: (3)
    8: (4)
   10: (2,2)
   16: (5)
   18: (3,2)
   20: (2,3)
   32: (6)
   36: (3,3)
   42: (2,2,2)
   64: (7)
   68: (4,3)
   72: (3,4)
   74: (3,2,2)
   82: (2,3,2)
   84: (2,2,3)
		

Crossrefs

See link for sequences related to standard compositions.
A subset of A022340.
These compositions are counted by A251729.
The unordered version (using Heinz numbers of partitions) is A356845.
A333217 ranks complete compositions.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356841 ranks gapless compositions, counted by A107428.
A356842 ranks non-gapless compositions, counted by A356846.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[100],!MemberQ[stc[#],1]&&nogapQ[stc[#]]&]

Formula

Complement of A333217 in A356841.

A356936 Number of multiset partitions of the multiset of prime indices of n into intervals. Number of factorizations of n into members of A073485.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 08 2022

Keywords

Comments

An interval is a set of positive integers with all differences of adjacent elements equal to 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(n) multiset partitions for n = 6, 30, 36, 90, 180:
  {12}    {123}      {12}{12}      {12}{23}      {12}{123}
  {1}{2}  {1}{23}    {1}{2}{12}    {2}{123}      {1}{12}{23}
          {3}{12}    {1}{1}{2}{2}  {1}{2}{23}    {1}{2}{123}
          {1}{2}{3}                {2}{3}{12}    {3}{12}{12}
                                   {1}{2}{2}{3}  {1}{1}{2}{23}
                                                 {1}{2}{3}{12}
                                                 {1}{1}{2}{2}{3}
The a(n) factorizations for n = 6, 30, 36, 90, 180:
  (6)    (30)     (6*6)      (3*30)     (6*30)
  (2*3)  (5*6)    (2*3*6)    (6*15)     (5*6*6)
         (2*15)   (2*2*3*3)  (3*5*6)    (2*3*30)
         (2*3*5)             (2*3*15)   (2*6*15)
                             (2*3*3*5)  (2*3*5*6)
                                        (2*2*3*15)
                                        (2*2*3*3*5)
		

Crossrefs

A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sum A001414.
A001222 counts prime factors with multiplicity.
A356069 counts gapless divisors, initial A356224 (complement A356225).
A056239 adds up prime indices, row sums of A112798.
Intervals are counted by A000012, A001227, ranked by A073485.
Other conditions: A050320, A050330, A322585, A356931, A356945.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    chQ[y_]:=Or[Length[y]<=1,Union[Differences[y]]=={1}];
    Table[Length[Select[facs[n],And@@chQ/@primeMS/@#&]],{n,100}]

A356945 Number of multiset partitions of the prime indices of n such that each block covers an initial interval. Number of factorizations of n into members of A055932.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 7, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Sep 08 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a{n} multiset partitions for n = 8, 24, 72, 96:
  {{111}}      {{1112}}      {{11122}}      {{111112}}
  {{1}{11}}    {{1}{112}}    {{1}{1122}}    {{1}{11112}}
  {{1}{1}{1}}  {{11}{12}}    {{11}{122}}    {{11}{1112}}
               {{1}{1}{12}}  {{12}{112}}    {{111}{112}}
                             {{1}{1}{122}}  {{12}{1111}}
                             {{1}{12}{12}}  {{1}{1}{1112}}
                                            {{1}{11}{112}}
                                            {{11}{11}{12}}
                                            {{1}{12}{111}}
                                            {{1}{1}{1}{112}}
                                            {{1}{1}{11}{12}}
                                            {{1}{1}{1}{1}{12}}
		

Crossrefs

Positions of 0's are A080259, complement A055932.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, with sum A001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A356069 counts gapless divisors, initial A356224 (complement A356225).
Multisets covering an initial interval are counted by A000009, A000041, A011782, ranked by A055932.
Other types: A034691, A089259, A356954, A356955.
Other conditions: A050320, A050330, A322585, A356233, A356931, A356936.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nnQ[m_]:=PrimePi/@First/@FactorInteger[m]==Range[PrimePi[Max@@First/@FactorInteger[m]]];
    Table[Length[Select[facs[n],And@@nnQ/@#&]],{n,100}]
Previous Showing 11-20 of 31 results. Next