A363620
Reverse-weighted alternating sum of the multiset of prime indices of n.
Original entry on oeis.org
0, 1, 2, 1, 3, 0, 4, 2, 2, -1, 5, 3, 6, -2, 1, 2, 7, 1, 8, 4, 0, -3, 9, 1, 3, -4, 4, 5, 10, 2, 11, 3, -1, -5, 2, 3, 12, -6, -2, 0, 13, 3, 14, 6, 5, -7, 15, 4, 4, 0, -3, 7, 16, 0, 1, -1, -4, -8, 17, 2, 18, -9, 6, 3, 0, 4, 19, 8, -5, 1, 20, 2, 21, -10, 3, 9, 3
Offset: 1
The prime indices of 300 are {1,1,2,3,3}, with reverse-weighted alternating sum 1*3 - 2*3 + 3*2 - 4*1 + 5*1 = 4, so a(300) = 4.
Cf.
A001221,
A046660,
A053632,
A106529,
A124010,
A222855,
A261079,
A358137,
A359674,
A359755,
A363531,
A363532.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}];
Table[revaltwtsum[prix[n]],{n,100}]
A363624
Weighted alternating sum of the integer partition with Heinz number n.
Original entry on oeis.org
0, 1, 2, -1, 3, 0, 4, 2, -2, 1, 5, 3, 6, 2, -1, -2, 7, 1, 8, 4, 0, 3, 9, -1, -3, 4, 4, 5, 10, 2, 11, 3, 1, 5, -2, -3, 12, 6, 2, 0, 13, 3, 14, 6, 5, 7, 15, 4, -4, 0, 3, 7, 16, 0, -1, 1, 4, 8, 17, -2, 18, 9, 6, -3, 0, 4, 19, 8, 5, 1, 20, 2, 21, 10, 3, 9, -3, 5
Offset: 1
The partition with Heinz number 600 is (3,3,2,1,1,1), with weighted alternating sum 1*3 - 2*3 + 3*2 - 4*1 + 5*1 - 6*1 = -2, so a(600) = -2.
For multisets instead of partitions we have
A363619.
A359677 gives zero-based weighted sum of prime indices, reverse
A359674.
A363626 counts compositions with reverse-weighted alternating sum 0.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
Table[altwtsum[Reverse[prix[n]]],{n,100}]
A372432
Positive integers k such that the prime indices of k are not disjoint from the binary indices of k.
Original entry on oeis.org
3, 5, 6, 14, 15, 18, 20, 22, 27, 28, 30, 39, 42, 45, 51, 52, 54, 55, 56, 60, 63, 66, 68, 70, 75, 77, 78, 85, 87, 88, 90, 91, 95, 99, 100, 102, 104, 105, 110, 111, 114, 117, 119, 121, 123, 125, 126, 133, 135, 138, 140, 147, 150, 152, 154, 159, 162, 165, 168
Offset: 1
The binary indices of 18 are {2,5}, and the prime indices are {1,2,2}, so 18 is in the sequence.
The terms together with their prime indices begin:
3: {2}
5: {3}
6: {1,2}
14: {1,4}
15: {2,3}
18: {1,2,2}
20: {1,1,3}
22: {1,5}
27: {2,2,2}
28: {1,1,4}
30: {1,2,3}
The terms together with their binary expansions and binary indices begin:
3: 11 ~ {1,2}
5: 101 ~ {1,3}
6: 110 ~ {2,3}
14: 1110 ~ {2,3,4}
15: 1111 ~ {1,2,3,4}
18: 10010 ~ {2,5}
20: 10100 ~ {3,5}
22: 10110 ~ {2,3,5}
27: 11011 ~ {1,2,4,5}
28: 11100 ~ {3,4,5}
30: 11110 ~ {2,3,4,5}
For subset instead of overlap we have
A372430.
A070939 gives length of binary expansion.
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Intersection[bix[#],prix[#]]!={}&]
A362560
Number of integer partitions of n whose weighted sum is not divisible by n.
Original entry on oeis.org
0, 1, 1, 4, 5, 8, 12, 19, 25, 38, 51, 70, 93, 124, 162, 217, 279, 360, 462, 601, 750, 955, 1203, 1502, 1881, 2336, 2892, 3596, 4407, 5416, 6623, 8083, 9830, 11943, 14471, 17488, 21059, 25317, 30376, 36424, 43489, 51906, 61789, 73498, 87186, 103253, 122098
Offset: 1
The weighted sum of y = (3,3,1) is 1*3+2*3+3*1 = 12, which is not a multiple of 7, so y is counted under a(7).
The a(2) = 1 through a(7) = 12 partitions:
(11) (21) (22) (32) (33) (43)
(31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (321) (322)
(2111) (411) (331)
(2211) (421)
(21111) (511)
(111111) (2221)
(4111)
(22111)
(31111)
(211111)
For median instead of mean we have
A322439 aerated, complement
A362558.
The complement is counted by
A362559.
A264034 counts partitions by weighted sum.
A318283 = weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A001227,
A051293,
A067538,
A240219,
A261079,
A326622,
A349156,
A360068,
A360069,
A360241,
A362051.
-
Table[Length[Select[IntegerPartitions[n],!Divisible[Total[Accumulate[Reverse[#]]],n]&]],{n,30}]
A363531
Heinz numbers of integer partitions such that 3*(sum) = (reverse-weighted sum).
Original entry on oeis.org
1, 32, 144, 216, 243, 672, 1008, 1350, 2176, 2250, 2520, 2673, 3125, 3969, 4160, 4200, 5940, 6240, 6615, 7344, 7424, 7744, 8262, 9261, 9800, 9900, 10400, 11616, 12250, 12312, 12375, 13104, 13720, 14720, 14742, 16767, 16807, 17150, 19360, 21840, 22080, 23100
Offset: 1
The terms together with their prime indices begin:
1: {}
32: {1,1,1,1,1}
144: {1,1,1,1,2,2}
216: {1,1,1,2,2,2}
243: {2,2,2,2,2}
672: {1,1,1,1,1,2,4}
1008: {1,1,1,1,2,2,4}
1350: {1,2,2,2,3,3}
2176: {1,1,1,1,1,1,1,7}
2250: {1,2,2,3,3,3}
2520: {1,1,1,2,2,3,4}
2673: {2,2,2,2,2,5}
3125: {3,3,3,3,3}
3969: {2,2,2,2,4,4}
4160: {1,1,1,1,1,1,3,6}
These partitions are counted by
A363526.
A053632 counts compositions by weighted sum.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000041,
A000720,
A001221,
A046660,
A106529,
A118914,
A124010,
A181819,
A215366,
A359362,
A359755.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[prix[#]]]&]
A363526
Number of integer partitions of n with reverse-weighted sum 3*n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 3, 2, 4, 4, 4, 5, 5, 4, 7, 7, 5, 8, 7, 6, 11, 9, 8, 11, 10, 10, 13, 12, 11, 15, 15, 12, 17, 16, 14, 20, 18, 16, 22, 20, 19, 24, 22, 20, 27, 26, 23, 29, 27, 25, 33, 30, 28, 35, 33, 31, 38, 36, 33, 41, 40
Offset: 0
The partition (6,4,4,1) has sum 15 and reverse-weighted sum 45 so is counted under a(15).
The a(n) partitions for n = {5, 10, 15, 16, 21, 24}:
(1,1,1,1,1) (4,3,2,1) (6,4,4,1) (6,5,4,1) (8,6,6,1) (9,7,7,1)
(2,2,2,2,2) (6,5,2,2) (6,6,2,2) (8,7,4,2) (9,8,5,2)
(7,3,3,2) (7,4,3,2) (9,5,5,2) (9,9,3,3)
(3,3,3,3,3) (9,6,3,3) (10,6,6,2)
(10,4,4,3) (10,7,4,3)
(11,5,5,3)
(12,4,4,4)
Positions of terms with omega > 4 appear to be
A079998.
The version for compositions is
A231429.
The non-reverse version is
A363527.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A359755,
A360672,
A360675,
A362559,
A362560,
A363525,
A363528.
-
Table[Length[Select[IntegerPartitions[n],Total[Accumulate[#]]==3n&]],{n,0,30}]
A363527
Number of integer partitions of n with weighted sum 3*n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 3, 4, 4, 6, 8, 7, 10, 13, 13, 21, 25, 24, 37, 39, 40, 58, 63, 72, 94, 106, 118, 144, 165, 181, 224, 256, 277, 341, 387, 417, 504, 560, 615, 743, 818, 899, 1066, 1171, 1285, 1502, 1655, 1819, 2108, 2315, 2547, 2915
Offset: 0
The partition (2,2,1,1,1,1) has sum 8 and weighted sum 24 so is counted under a(8).
The a(13) = 1 through a(18) = 8 partitions:
(332221) (333221) (33333) (442222) (443222) (443331)
(4322111) (522222) (5322211) (4433111) (444222)
(71111111) (4332111) (55111111) (5332211) (533322)
(63111111) (63211111) (55211111) (4443111)
(63311111) (7222221)
(72221111) (55311111)
(64221111)
(A11111111)
The version for compositions is
A231429.
These partitions have ranks
A363531.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A359755,
A360672,
A360675,
A362559,
A362560,
A363525,
A363528,
A363532.
-
Table[Length[Select[IntegerPartitions[n],Total[Accumulate[Reverse[#]]]==3n&]],{n,0,30}]
A372430
Positive integers k such that the distinct prime indices of k are a subset of the binary indices of k.
Original entry on oeis.org
1, 3, 5, 15, 27, 39, 55, 63, 85, 121, 125, 135, 169, 171, 175, 209, 243, 247, 255, 299, 375, 399, 437, 459, 507, 539, 605, 637, 725, 735, 783, 841, 867, 891, 1085, 1215, 1323, 1331, 1375, 1519, 1767, 1815, 1863, 2079, 2125, 2187, 2223, 2295, 2299, 2331, 2405
Offset: 1
The prime indices of 135 are {2,2,2,3}, and the binary indices are {1,2,3,8}. Since {2,3} is a subset of {1,2,3,8}, 135 is in the sequence.
The terms together with their prime indices begin:
1: {}
3: {2}
5: {3}
15: {2,3}
27: {2,2,2}
39: {2,6}
55: {3,5}
63: {2,2,4}
85: {3,7}
121: {5,5}
125: {3,3,3}
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
3: 11 ~ {1,2}
5: 101 ~ {1,3}
15: 1111 ~ {1,2,3,4}
27: 11011 ~ {1,2,4,5}
39: 100111 ~ {1,2,3,6}
55: 110111 ~ {1,2,3,5,6}
63: 111111 ~ {1,2,3,4,5,6}
85: 1010101 ~ {1,3,5,7}
121: 1111001 ~ {1,4,5,6,7}
125: 1111101 ~ {1,3,4,5,6,7}
A070939 gives length of binary expansion.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[1000],SubsetQ[bix[#],prix[#]]&]
A363530
Heinz numbers of integer partitions such that 3*(sum) = (weighted sum).
Original entry on oeis.org
1, 32, 40, 60, 100, 126, 210, 243, 294, 351, 550, 585, 770, 819, 1210, 1274, 1275, 1287, 1521, 1785, 2002, 2366, 2793, 2805, 2875, 3125, 3315, 4025, 4114, 4335, 4389, 4862, 5187, 6325, 6358, 6422, 6783, 7105, 7475, 7581, 8349, 8398, 9386, 9775, 9867, 10925
Offset: 1
The terms together with their prime indices begin:
1: {}
32: {1,1,1,1,1}
40: {1,1,1,3}
60: {1,1,2,3}
100: {1,1,3,3}
126: {1,2,2,4}
210: {1,2,3,4}
243: {2,2,2,2,2}
294: {1,2,4,4}
351: {2,2,2,6}
550: {1,3,3,5}
585: {2,2,3,6}
770: {1,3,4,5}
819: {2,2,4,6}
These partitions are counted by
A363527.
A053632 counts compositions by weighted sum.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000041,
A000720,
A001221,
A046660,
A106529,
A118914,
A124010,
A181819,
A215366,
A359362,
A359755.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[Reverse[prix[#]]]]&]
A372431
Positive integers k such that the prime indices of k are disjoint from the binary indices of k.
Original entry on oeis.org
1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 21, 23, 24, 25, 26, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 53, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83, 84, 86, 89, 92, 93, 94, 96, 97, 98, 101
Offset: 1
The binary indices of 65 are {1,7}, and the prime indices are {3,6}, so 65 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
4: {1,1}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
12: {1,1,2}
13: {6}
16: {1,1,1,1}
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
7: 111 ~ {1,2,3}
8: 1000 ~ {4}
9: 1001 ~ {1,4}
10: 1010 ~ {2,4}
11: 1011 ~ {1,2,4}
12: 1100 ~ {3,4}
13: 1101 ~ {1,3,4}
16: 10000 ~ {5}
For subset instead of disjoint we have
A372430.
A070939 gives length of binary expansion.
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Intersection[bix[#],prix[#]]=={}&]
Comments