cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A374697 Number of integer compositions of n whose leaders of strictly increasing runs are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 29, 55, 103, 193, 360, 669, 1239, 2292, 4229, 7794, 14345, 26375, 48452, 88946, 163187, 299250, 548543, 1005172, 1841418, 3372603, 6175853, 11307358, 20699979, 37890704, 69351776, 126926194, 232283912, 425075191, 777848212, 1423342837, 2604427561
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are weakly decreasing [weakly increasing works too].

Examples

			The composition (1,2,1,3,2,3) has strictly increasing runs ((1,2),(1,3),(2,3)), with leaders (1,1,2), so is not counted under a(12).
The a(0) = 1 through a(5) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (131)
                        (1111)  (212)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
		

Crossrefs

The opposite version is A374764.
Ranked by positions of weakly decreasing rows in A374683.
Interchanging weak/strict appears to give A188920, opposite A358836.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374682.
- For leaders of weakly increasing runs we have A189076, complement A374636.
- For leaders of weakly decreasing runs we have A374747.
- For leaders of strictly decreasing runs we have A374765.
Types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For weakly increasing leaders we have A374690.
- For strictly increasing leaders we have A374688.
- For strictly decreasing leaders we have A374689.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1/prod(k=1, n, 1 - x^k*prod(j=k+1, n-k, 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1/(Product_{k>=1} (1 - x^k*Product_{j>=k+1} (1 + x^j))). - Andrew Howroyd, Jul 31 2024

Extensions

a(26) onwards from Andrew Howroyd, Jul 31 2024

A375134 Number of integer partitions of n whose maximal anti-runs have distinct minima.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 6, 8, 11, 12, 18, 21, 28, 33, 43, 52, 66, 78, 98, 116, 145, 171, 209, 247, 300, 352, 424, 499, 595, 695, 826, 963, 1138, 1322, 1553, 1802, 2106, 2435, 2835, 3271, 3795, 4365, 5046, 5792, 6673, 7641, 8778, 10030, 11490, 13099, 14968, 17030
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2024

Keywords

Comments

These are partitions with no part appearing more than twice and with the least part appearing only once.
Also the number of reversed integer partitions of n whose maximal anti-runs have distinct minima.

Examples

			The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with minima (5,3,1), so y is counted under a(29).
The a(1) = 1 through a(9) = 11 partitions:
  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)     (9)
            (12)  (13)  (14)   (15)   (16)   (17)    (18)
                        (23)   (24)   (25)   (26)    (27)
                        (122)  (123)  (34)   (35)    (36)
                                      (124)  (125)   (45)
                                      (133)  (134)   (126)
                                             (233)   (135)
                                             (1223)  (144)
                                                     (234)
                                                     (1224)
                                                     (1233)
		

Crossrefs

Includes all strict partitions A000009.
For identical instead of distinct leaders we have A115029.
A version for compositions instead of partitions is A374518, ranks A374638.
For minima instead of maxima we have A375133, ranks A375402.
These partitions have ranks A375398.
The complement is counted by A375404, ranks A375399.
A000041 counts integer partitions.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts integer compositions.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@Min/@Split[#,UnsameQ]&]],{n,0,30}]
  • PARI
    A_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N,(x^i)*prod(j=i+1,N-i,(1-x^(3*j))/(1-x^j)))); Vec(f)}
    A_x(51) \\ John Tyler Rascoe, Aug 21 2024

Formula

G.f.: 1 + Sum_{i>0} (x^i * Product_{j>i} (1-x^(3*j))/(1-x^j)). - John Tyler Rascoe, Aug 21 2024

A358908 Number of finite sequences of distinct integer partitions with total sum n and weakly decreasing lengths.

Original entry on oeis.org

1, 1, 2, 6, 10, 23, 50, 95, 188, 378, 747, 1414, 2739, 5179, 9811, 18562, 34491, 64131, 118607, 218369, 400196, 731414, 1328069, 2406363, 4346152, 7819549, 14027500, 25090582, 44749372, 79586074, 141214698, 249882141, 441176493, 777107137, 1365801088, 2395427040, 4192702241
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 10 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((211))
                 ((2)(1))   ((1111))
                 ((11)(1))  ((1)(3))
                            ((3)(1))
                            ((11)(2))
                            ((21)(1))
                            ((111)(1))
		

Crossrefs

This is the distinct case of A055887 with weakly decreasing lengths.
This is the distinct case is A141199.
The case of distinct lengths also is A358836.
This is the case of A358906 with weakly decreasing lengths.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
A358912 counts sequences of partitions with distinct lengths.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],UnsameQ@@#&&GreaterEqual@@Length/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(n,v) = {[subst(serlaplace(p), y, 1) | p<-Vec(prod(k=1, #v, (1 + y*x^k + O(x*x^n))^v[k] ))]}
    seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, Ser(R(n, Vec(polcoef(g, k, y), -n)))  ))} \\ Andrew Howroyd, Dec 31 2022

Extensions

Terms a(16) and beyond from Andrew Howroyd, Dec 31 2022

A374746 Number of integer compositions of n whose leaders of weakly decreasing runs are strictly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 18, 31, 51, 86, 143, 241, 397, 657, 1082, 1771, 2889, 4697, 7605, 12269, 19720, 31580, 50412, 80205, 127208, 201149, 317171, 498717, 782076, 1223230, 1908381, 2969950, 4610949, 7141972, 11037276, 17019617, 26188490, 40213388, 61624824
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The a(0) = 1 through a(7) = 18 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)
           (11)  (21)   (22)    (32)     (33)      (43)
                 (111)  (31)    (41)     (42)      (52)
                        (211)   (221)    (51)      (61)
                        (1111)  (311)    (222)     (322)
                                (2111)   (312)     (331)
                                (11111)  (321)     (412)
                                         (411)     (421)
                                         (2211)    (511)
                                         (3111)    (2221)
                                         (21111)   (3112)
                                         (111111)  (3121)
                                                   (3211)
                                                   (4111)
                                                   (22111)
                                                   (31111)
                                                   (211111)
                                                   (1111111)
		

Crossrefs

Ranked by positions of strictly decreasing rows in A374740, opp. A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A188920.
- For leaders of anti-runs we have A374680.
- For leaders of strictly increasing runs we have A374689.
- For leaders of strictly decreasing runs we have A374763.
Types of run-leaders (instead of strictly decreasing):
- For weakly increasing leaders we appear to have A188900.
- For identical leaders we have A374742.
- For distinct leaders we have A374743, ranks A374701.
- For strictly increasing leaders we have opposite A374634.
- For weakly decreasing leaders we have A374747.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374748 counts compositions by sum of leaders of weakly decreasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
  • PARI
    seq(n)={my(A=O(x*x^n), p=1+A, q=p, r=p); for(k=1, n\2, r += x^k*q/(1-x^k); p /= 1 - x^k; q *= (1 - x^k/(1-x^k) + x^k*p)/(1-x^k) );  Vec(r + x^(n\2+1)*q/(1-x))} \\ Andrew Howroyd, Dec 30 2024

Formula

G.f.: Sum_{k>=0} x^k*Q(k,x)/(1 - x^k) where Q(0,x) = 1 and Q(k,x) = Q(k-1,x) * (1 - x^k/(1 - x^k) + x^k*Product_{j=1..k} (1 - x^j))/(1 - x^k) for k > 0. - Andrew Howroyd, Dec 30 2024

Extensions

a(24)-a(39) from Alois P. Heinz, Jul 26 2024

A358901 Number of integer partitions of n whose parts have all different numbers of prime factors (A001222).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 7, 9, 8, 9, 11, 11, 15, 16, 16, 18, 20, 22, 26, 28, 31, 32, 36, 40, 45, 46, 46, 50, 59, 64, 70, 75, 78, 83, 89, 94, 108, 106, 104, 120, 137, 142, 147, 150, 161, 174, 190, 200, 220, 226, 224, 248, 274, 274, 287, 301, 320, 340, 351, 361
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(11) = 7 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
            (21)  (31)  (41)  (42)  (43)   (62)   (54)   (82)   (74)
                              (51)  (61)   (71)   (63)   (91)   (65)
                                    (421)  (431)  (81)   (451)  (83)
                                                  (621)  (631)  (92)
                                                                (A1)
                                                                (821)
		

Crossrefs

The weakly decreasing version is A358909 (complement A358910).
The version not counting multiplicity is A358903, weakly decreasing A358902.
For equal numbers of prime factors we have A319169, compositions A358911.
A001222 counts prime factors, distinct A001221.
A063834 counts twice-partitions.
A358836 counts multiset partitions with all distinct block sizes.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@PrimeOmega/@#&]],{n,0,60}]

Extensions

a(61) and beyond from Lucas A. Brown, Dec 14 2022

A358905 Number of sequences of integer partitions with total sum n that are rectangular, meaning all lengths are equal.

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 49, 91, 179, 341, 664, 1280, 2503, 4872, 9557, 18750, 36927, 72800, 143880, 284660, 564093, 1118911, 2221834, 4415417, 8781591, 17476099, 34799199, 69327512, 138176461, 275503854, 549502119, 1096327380, 2187894634, 4367310138, 8719509111
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(0) = 1 through a(4) = 13 sequences:
  ()  ((1))  ((2))     ((3))        ((4))
             ((11))    ((21))       ((22))
             ((1)(1))  ((111))      ((31))
                       ((1)(2))     ((211))
                       ((2)(1))     ((1111))
                       ((1)(1)(1))  ((1)(3))
                                    ((2)(2))
                                    ((3)(1))
                                    ((11)(11))
                                    ((1)(1)(2))
                                    ((1)(2)(1))
                                    ((2)(1)(1))
                                    ((1)(1)(1)(1))
		

Crossrefs

The case of set partitions is A038041.
The version for weakly decreasing lengths is A141199, strictly A358836.
For equal sums instead of lengths we have A279787.
The case of twice-partitions is A306319, distinct A358830.
The unordered version is A319066.
The case of plane partitions is A323429.
The case of constant sums also is A358833.
A055887 counts sequences of partitions with total sum n.
A281145 counts same-trees.
A319169 counts partitions with constant Omega, ranked by A320324.
A358911 counts compositions with constant Omega, distinct A358912.

Programs

  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],SameQ@@Length/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(g=P(n,y)); Vec(1 + sum(k=1, n, 1/(1 - polcoef(g, k, y)) - 1))} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: 1 + Sum_{k>=1} (1/(1 - [y^k]P(x,y)) - 1) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(16) and beyond from Andrew Howroyd, Dec 31 2022

A358906 Number of finite sequences of distinct integer partitions with total sum n.

Original entry on oeis.org

1, 1, 2, 7, 13, 35, 87, 191, 470, 1080, 2532, 5778, 13569, 30715, 69583, 160386, 360709, 814597, 1824055, 4102430, 9158405, 20378692, 45215496, 100055269, 221388993, 486872610, 1069846372, 2343798452, 5127889666, 11186214519, 24351106180, 52896439646
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 13 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((211))
                 ((2)(1))   ((1111))
                 ((1)(11))  ((1)(3))
                 ((11)(1))  ((3)(1))
                            ((11)(2))
                            ((1)(21))
                            ((2)(11))
                            ((21)(1))
                            ((1)(111))
                            ((111)(1))
		

Crossrefs

This is the case of A055887 with distinct partitions.
The unordered version is A261049.
The case of twice-partitions is A296122.
The case of distinct sums is A336342, constant sums A279787.
The version for sequences of compositions is A358907.
The case of weakly decreasing lengths is A358908.
The case of distinct lengths is A358912.
The version for strict partitions is A358913, distinct case of A304969.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
          binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..32);  # Alois P. Heinz, Feb 13 2024
  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],UnsameQ@@#&]],{n,0,10}]

Formula

a(n) = Sum_{k} A330463(n,k) * k!.

A375398 Numbers k such that the minima of maximal anti-runs in the weakly increasing sequence of prime factors of k (with multiplicity) are distinct.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2024

Keywords

Comments

First differs from A375402 in lacking 20.
An anti-run is a sequence with no adjacent equal parts.
The minima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the least term of each.
Note the prime factors can alternatively be taken in weakly decreasing order.

Examples

			The prime factors of 300 are {2,2,3,5,5}, with maximal anti-runs ((2),(2,3,5),(5)), with minima (2,2,5), so 300 is not in the sequence.
The prime factors of 450 are {2,3,3,5,5}, with maximal anti-runs ((2,3),(3,5),(5)), with minima (2,3,5), so 450 is in the sequence.
		

Crossrefs

A version for compositions is A374638, counted by A374518.
These are positions of strict rows in A375128, sums A374706, ranks A375400.
Partitions (or reversed partitions) of this type are counted by A375134.
For identical instead of distinct we have A375396, counted by A115029.
The complement is A375399, counted by A375404.
For maxima instead of minima we have A375402, counted by A375133.
The complement for maxima is A375403, counted by A375401.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A number's prime factors (A027746, reverse A238689) have sum A001414, min A020639, max A006530.
A number's prime indices (A112798, reverse A296150) have sum A056239, min A055396, max A061395.
Both have length A001222, distinct A001221.

Programs

  • Mathematica
    Select[Range[100],UnsameQ@@Min /@ Split[Flatten[ConstantArray@@@FactorInteger[#]],UnsameQ]&]

A375401 Number of integer partitions of n whose maximal anti-runs do not all have different maxima.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 7, 12, 16, 25, 33, 48, 63, 88, 116, 157, 204, 272, 349, 456, 581, 749, 946, 1205, 1511, 1904, 2371, 2960, 3661, 4538, 5577, 6862, 8389, 10257, 12472, 15164, 18348, 22192, 26731, 32177, 38593, 46254, 55256, 65952, 78500, 93340, 110706
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2024

Keywords

Comments

An anti-run is a sequence with no adjacent equal terms. The maxima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the greatest term of each.

Examples

			The partition y = (3,2,2,1) has maximal ant-runs ((3,2),(2,1)), with maxima (3,2), so y is not counted under a(8).
The a(2) = 1 through a(8) = 12 partitions:
  (11)  (111)  (22)    (221)    (33)      (331)      (44)
               (1111)  (2111)   (222)     (2221)     (332)
                       (11111)  (2211)    (4111)     (2222)
                                (3111)    (22111)    (3311)
                                (21111)   (31111)    (5111)
                                (111111)  (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

For identical instead of distinct we have A239955, ranks A073492.
The complement is counted by A375133, ranks A375402.
The complement for minima instead of maxima is A375134, ranks A375398.
These partitions have Heinz numbers A375403.
For minima instead of maxima we have A375404, ranks A375399.
The reverse for identical instead of distinct is A375405, ranks A375397.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Max/@Split[#,UnsameQ]&]],{n,0,30}]

A375404 Number of integer partitions of n whose minima of maximal anti-runs are not all different.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 7, 9, 14, 19, 30, 38, 56, 73, 102, 133, 179, 231, 307, 392, 511, 647, 831, 1046, 1328, 1658, 2084, 2586, 3219, 3970, 4909, 6016, 7386, 9005, 10988, 13330, 16175, 19531, 23580, 28350, 34067, 40788, 48809, 58215, 69383, 82461, 97917, 115976
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2024

Keywords

Comments

An anti-run is a sequence with no adjacent equal terms. The minima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the least term of each.
Also the number of reversed integer partitions of n such that the minima of maximal anti-runs are not all different.

Examples

			The a(0) = 0 through a(8) = 14 reversed partitions:
  .  .  (11)  (111)  (22)    (113)    (33)      (115)      (44)
                     (112)   (1112)   (114)     (223)      (116)
                     (1111)  (11111)  (222)     (1114)     (224)
                                      (1113)    (1123)     (1115)
                                      (1122)    (1222)     (1124)
                                      (11112)   (11113)    (1133)
                                      (111111)  (11122)    (2222)
                                                (111112)   (11114)
                                                (1111111)  (11123)
                                                           (11222)
                                                           (111113)
                                                           (111122)
                                                           (1111112)
                                                           (11111111)
		

Crossrefs

The complement for maxima instead of minima is A375133, ranks A375402.
The complement is counted by A375134, ranks A375398.
These partitions are ranked by A375399.
For maxima instead of minima we have A375401, ranks A375403.
For identical instead of distinct we have A375405, ranks A375397.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Min/@Split[#,UnsameQ]&]],{n,0,30}]
Previous Showing 11-20 of 28 results. Next