A360250
Number of integer partitions of n where the parts have greater mean than the distinct parts.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 2, 2, 3, 3, 9, 5, 13, 15, 18, 20, 37, 34, 59, 51, 68, 92, 134, 121, 167, 203, 251, 282, 387, 375, 537, 561, 714, 888, 958, 1042, 1408, 1618, 1939, 2076, 2650, 2764, 3479, 3863, 4431, 5387, 6520, 6688, 8098, 9041, 10614, 12084, 14773, 15469
Offset: 0
The a(5) = 1 through a(12) = 5 partitions:
(221) . (331) (332) (441) (442) (443) (552)
(2221) (22211) (3321) (3331) (551) (4431)
(22221) (222211) (3332) (33321)
(4331) (44211)
(4421) (2222211)
(33221)
(33311)
(222221)
(2222111)
For example, the partition y = (4,3,3,1) has mean 11/4 and distinct parts {1,3,4} with mean 8/5, so y is counted under a(11).
These partitions have ranks
A360252.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A359894 counts partitions with mean different from median, ranks
A359890.
A360071 counts partitions by number of parts and number of distinct parts.
-
Table[Length[Select[IntegerPartitions[n],Mean[#]>Mean[Union[#]]&]],{n,0,30}]
A360251
Number of integer partitions of n where the parts have lesser mean than the distinct parts.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 3, 7, 9, 16, 22, 34, 44, 69, 88, 118, 163, 221, 280, 376, 473, 619, 800, 1016, 1257, 1621, 2038, 2522, 3117, 3921, 4767, 5964, 7273, 8886, 10838, 13141, 15907, 19468, 23424, 28093, 33656, 40672, 48273, 58171, 68944, 81888, 97596, 115643
Offset: 0
The a(4) = 1 through a(9) = 16 partitions:
(211) (311) (411) (322) (422) (522)
(2111) (3111) (511) (611) (711)
(21111) (3211) (4211) (3222)
(4111) (5111) (4221)
(22111) (32111) (4311)
(31111) (41111) (5211)
(211111) (221111) (6111)
(311111) (32211)
(2111111) (33111)
(42111)
(51111)
(321111)
(411111)
(2211111)
(3111111)
(21111111)
For example, the partition y = (4,2,2,1) has mean 9/4 and distinct parts {1,2,4} with mean 7/3, so y is counted under a(9).
These partitions have ranks
A360253.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A359894 counts partitions with mean different from median, ranks
A359890.
A360071 counts partitions by number of parts and number of distinct parts.
A360454
Numbers for which the prime multiplicities (or sorted signature) have the same median as the prime indices.
Original entry on oeis.org
1, 2, 9, 54, 100, 120, 125, 135, 168, 180, 189, 240, 252, 264, 280, 297, 300, 312, 336, 351, 396, 408, 440, 450, 456, 459, 468, 480, 513, 520, 528, 540, 552, 560, 588, 612, 616, 621, 624, 672, 680, 684, 696, 728, 744, 756, 760, 783, 816, 828, 837, 880, 882
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
9: {2,2}
54: {1,2,2,2}
100: {1,1,3,3}
120: {1,1,1,2,3}
125: {3,3,3}
135: {2,2,2,3}
168: {1,1,1,2,4}
180: {1,1,2,2,3}
189: {2,2,2,4}
240: {1,1,1,1,2,3}
For example, the prime indices of 336 are {1,1,1,1,2,4} with median 1 and multiplicities {1,1,4} with median 1, so 336 is in the sequence.
For distinct indices instead of indices we have
A360453, counted by
A360455.
For distinct indices instead of multiplicities:
A360249, counted by
A360245.
These partitions are counted by
A360456.
A240219 counts partitions with mean equal to median, ranked by
A359889.
A359894 counts partitions with mean different from median, ranks
A359890.
A360005 gives median of prime indices (times two).
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Median[prix[#]]==Median[Length/@Split[prix[#]]]&]
A360686
Number of integer partitions of n whose distinct parts have integer median.
Original entry on oeis.org
1, 2, 2, 4, 3, 8, 7, 16, 17, 31, 35, 60, 67, 99, 121, 170, 200, 270, 328, 436, 522, 674, 828, 1061, 1292, 1626, 1983, 2507, 3035, 3772, 4582, 5661, 6801, 8358, 10059, 12231, 14627, 17702, 21069, 25423, 30147, 36100, 42725, 50936, 60081, 71388, 84007, 99408
Offset: 1
The a(1) = 1 through a(8) = 16 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (331) (44)
(31) (11111) (42) (421) (53)
(1111) (51) (511) (62)
(222) (3211) (71)
(321) (31111) (422)
(3111) (1111111) (431)
(111111) (521)
(2222)
(3221)
(3311)
(4211)
(5111)
(32111)
(311111)
(11111111)
For example, the partition y = (7,4,2,1,1) has distinct parts {1,2,4,7} with median 3, so y is counted under a(15).
For multiplicities instead of distinct parts:
A360687.
The complement is counted by
A360689.
A000975 counts subsets with integer median.
A116608 counts partitions by number of distinct parts.
A360455
Number of integer partitions of n for which the distinct parts have the same median as the multiplicities.
Original entry on oeis.org
1, 1, 0, 0, 2, 1, 1, 0, 2, 2, 5, 8, 10, 14, 20, 19, 26, 31, 35, 41, 55, 65, 85, 102, 118, 151, 181, 201, 236, 281, 313, 365, 424, 495, 593, 688, 825, 978, 1181, 1374, 1650, 1948, 2323, 2682, 3175, 3680, 4314, 4930, 5718, 6546, 7532, 8557, 9777, 11067, 12622
Offset: 0
The a(1) = 1 through a(11) = 8 partitions:
1 . . 22 221 3111 . 3311 333 3331 32222
211 41111 32211 33211 33221
42211 44111
322111 52211
511111 322211
332111
422111
3221111
These partitions have ranks
A360453.
A116608 counts partitions by number of distinct parts.
-
Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[Union[#]]&]],{n,0,30}]
A360456
Number of integer partitions of n for which the parts have the same median as the multiplicities.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 0, 1, 2, 5, 7, 10, 14, 21, 28, 36, 51, 64, 84, 106, 132, 165, 202, 252, 311, 391, 473, 579, 713, 868, 1069, 1303, 1617, 1954, 2404, 2908, 3556, 4282, 5200, 6207, 7505, 8934, 10700, 12717, 15165, 17863, 21222, 24976, 29443, 34523, 40582, 47415
Offset: 0
The a(1) = 1 through a(11) = 10 partitions:
1 . . 22 . . 2221 3311 333 4222 5222
32111 3222 33211 33221
32211 42211 52211
42111 43111 53111
321111 52111 62111
421111 322211
3211111 431111
521111
4211111
32111111
These partitions have ranks
A360454.
A008284 counts partitions by number of parts.
-
Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[#]&]],{n,0,30}]
A360689
Number of integer partitions of n whose distinct parts have non-integer median.
Original entry on oeis.org
0, 0, 1, 1, 4, 3, 8, 6, 13, 11, 21, 17, 34, 36, 55, 61, 97, 115, 162, 191, 270, 328, 427, 514, 666, 810, 1027, 1211, 1530, 1832, 2260, 2688, 3342, 3952, 4824, 5746, 7010, 8313, 10116, 11915, 14436, 17074, 20536, 24239, 29053, 34170, 40747, 47865, 56830, 66621
Offset: 1
The a(1) = 0 through a(9) = 13 partitions:
. . (21) (211) (32) (411) (43) (332) (54)
(41) (2211) (52) (611) (63)
(221) (21111) (61) (22211) (72)
(2111) (322) (41111) (81)
(2221) (221111) (441)
(4111) (2111111) (522)
(22111) (3222)
(211111) (6111)
(22221)
(222111)
(411111)
(2211111)
(21111111)
For example, the partition y = (5,3,3,2,1,1) has distinct parts {1,2,3,5}, with median 5/2, so y is counted under a(15).
These partitions have ranks
A360551.
For multiplicities instead of distinct parts we have
A360690, ranks
A360554.
A116608 counts partitions by number of distinct parts.
A360457 gives median of distinct prime indices (times 2).
A363220
Number of integer partitions of n whose conjugate has the same median.
Original entry on oeis.org
1, 0, 1, 1, 1, 3, 3, 8, 8, 12, 12, 15, 21, 27, 36, 49, 65, 85, 112, 149, 176, 214, 257, 311, 378, 470, 572, 710, 877, 1080, 1322, 1637, 1983, 2416, 2899, 3465, 4107, 4891, 5763, 6820, 8071, 9542, 11289, 13381, 15808, 18710, 22122, 26105, 30737, 36156, 42377
Offset: 1
The partition y = (4,3,1,1) has median 2, and its conjugate (4,2,2,1) also has median 2, so y is counted under a(9).
The a(1) = 1 through a(9) = 8 partitions:
(1) . (21) (22) (311) (321) (511) (332) (333)
(411) (4111) (422) (711)
(3111) (31111) (611) (4221)
(3311) (4311)
(4211) (6111)
(5111) (51111)
(41111) (411111)
(311111) (3111111)
For mean instead of median we have
A047993.
Median of conjugate by rank is
A363219.
These partitions are ranked by
A363261.
A122111 represents partition conjugation.
A325347 counts partitions with integer median.
A352491 gives n minus Heinz number of conjugate.
Cf.
A000975,
A067538,
A114638,
A360068,
A360242,
A360248,
A362617,
A362618,
A362621,
A363223,
A363260.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],Median[#]==Median[conj[#]]&]],{n,30}]
Comments