A365312 Number of strict integer partitions with sum <= n that cannot be linearly combined using nonnegative coefficients to obtain n.
0, 0, 0, 1, 1, 3, 2, 6, 4, 8, 7, 16, 6, 24, 17, 24, 20, 46, 22, 62, 31, 63, 57, 106, 35, 122, 90, 137, 88, 212, 74, 262, 134, 267, 206, 345, 121, 476, 294, 484, 232, 698, 242, 837, 389, 763, 571, 1185, 318, 1327, 634, 1392, 727, 1927, 640, 2056, 827, 2233, 1328
Offset: 0
Keywords
Examples
The strict partition (7,3,2) has 19 = 1*7 + 2*3 + 3*2 so is not counted under a(19). The strict partition (9,6,3) cannot be linearly combined to obtain 19, so is counted under a(19). The a(0) = 0 through a(11) = 16 strict partitions: . . . (2) (3) (2) (4) (2) (3) (2) (3) (2) (3) (5) (3) (5) (4) (4) (3) (4) (4) (6) (5) (6) (4) (5) (7) (6) (7) (5) (6) (7) (8) (6) (4,2) (8) (9) (7) (4,2) (6,3) (8) (6,2) (9) (10) (4,2) (5,4) (6,2) (6,3) (6,4) (7,3) (8,2)
Crossrefs
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[Select[Join@@Array[IntegerPartitions,n], UnsameQ@@#&],combs[n,#]=={}&]],{n,0,10}]
-
Python
from math import isqrt from sympy.utilities.iterables import partitions def A365312(n): a = {tuple(sorted(set(p))) for p in partitions(n)} return sum(1 for m in range(1,n+1) for b in partitions(m,m=isqrt(1+(n<<3))>>1) if max(b.values()) == 1 and not any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023
Extensions
a(26)-a(58) from Chai Wah Wu, Sep 13 2023
Comments