cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A088314 Cardinality of set of sets of parts of all partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 30, 37, 51, 61, 79, 96, 124, 148, 186, 222, 275, 326, 400, 473, 575, 673, 811, 946, 1132, 1317, 1558, 1813, 2138, 2463, 2893, 3323, 3882, 4461, 5177, 5917, 6847, 7818, 8994, 10251, 11766, 13334, 15281, 17309, 19732, 22307
Offset: 0

Views

Author

Naohiro Nomoto, Nov 05 2003

Keywords

Comments

Number of different values of A007947(m) when A056239(m) is equal to n.
From Gus Wiseman, Sep 11 2023: (Start)
Also the number of finite sets of positive integers that can be linearly combined using all positive coefficients to obtain n. For example, the a(1) = 1 through a(7) = 12 sets are:
{1} {1} {1} {1} {1} {1} {1}
{2} {3} {2} {5} {2} {7}
{1,2} {4} {1,2} {3} {1,2}
{1,2} {1,3} {6} {1,3}
{1,3} {1,4} {1,2} {1,4}
{2,3} {1,3} {1,5}
{1,4} {1,6}
{1,5} {2,3}
{2,4} {2,5}
{1,2,3} {3,4}
{1,2,3}
{1,2,4}
(End)

Examples

			The 7 partitions of 5 and their sets of parts are
[ #]  partition      set of parts
[ 1]  [ 1 1 1 1 1 ]  {1}
[ 2]  [ 2 1 1 1 ]    {1, 2}
[ 3]  [ 2 2 1 ]      {1, 2}  (same as before)
[ 4]  [ 3 1 1 ]      {1, 3}
[ 5]  [ 3 2 ]        {2, 3}
[ 6]  [ 4 1 ]        {1, 4}
[ 7]  [ 5 ]          {5}
so we have a(5) = |{{1}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {5}}| = 6.
		

Crossrefs

Cf. A182410.
The complement in subsets of {1..n-1} is A070880(n) = A365045(n) - 1.
The case of pairs is A365315, see also A365314, A365320, A365321.
A116861 and A364916 count linear combinations of strict partitions.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 appear to count combination-free subsets.
A364914 and A365046 count combination-full subsets.

Programs

  • Haskell
    a066186 = sum . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    list2set := L -> {op(L)};
    a:= N -> list2set(map( list2set, combinat[partition](N) ));
    seq(nops(a(n)), n=0..30);
    #  Yogy Namara (yogy.namara(AT)gmail.com), Jan 13 2010
    b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i<1, {},
          {b(n, i-1)[], seq(map(x->{x[],i}, b(n-i*j, i-1))[], j=1..n/i)}))
        end:
    a:= n-> nops(b(n, n)):
    seq(a(n), n=0..40);
    # Alois P. Heinz, Aug 09 2012
  • Mathematica
    Table[Length[Union[Map[Union,IntegerPartitions[n]]]],{n,1,30}] (* Geoffrey Critzer, Feb 19 2013 *)
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i < 1, {},
         Union@Flatten@{b[n, i - 1], Table[If[Head[#] == List,
         Append[#, i]]& /@ b[n - i*j, i - 1], {j, 1, n/i}]}]];
    a[n_] := Length[b[n, n]];
    a /@ Range[0, 40] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,1,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@Array[IntegerPartitions,n], UnsameQ@@#&&combp[n,#]!={}&]], {n,0,15}] (* Gus Wiseman, Sep 11 2023 *)
  • Python
    from sympy.utilities.iterables import partitions
    def A088314(n): return len({tuple(sorted(set(p))) for p in partitions(n)}) # Chai Wah Wu, Sep 10 2023

Formula

a(n) = 2^(n-1) - A070880(n). - Alois P. Heinz, Feb 08 2019
a(n) = A365042(n) + 1. - Gus Wiseman, Sep 13 2023

Extensions

More terms and clearer definition from Vladeta Jovovic, Apr 21 2005

A367215 Number of strict integer partitions of n whose length (number of parts) is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 5, 7, 8, 10, 12, 15, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 95, 109, 124, 143, 162, 185, 210, 240, 270, 308, 347, 393, 443, 500, 562, 634, 711, 798, 895, 1002, 1120, 1252, 1397, 1558, 1735, 1930, 2146, 2383, 2644, 2930, 3245
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367225 /\ A005117.

Examples

			The a(2) = 1 through a(11) = 7 strict partitions:
  (2)  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (10)     (11)
            (3,1)  (4,1)  (5,1)  (4,3)  (5,3)  (5,4)  (6,4)    (6,5)
                                 (6,1)  (7,1)  (6,3)  (7,3)    (7,4)
                                               (8,1)  (9,1)    (8,3)
                                                      (5,4,1)  (10,1)
                                                               (5,4,2)
                                                               (6,4,1)
The a(2) = 1 through a(15) = 15 strict partitions (A..F = 10..15):
  2  3  4   5   6   7   8   9   A    B    C    D    E     F
        31  41  51  43  53  54  64   65   75   76   86    87
                    61  71  63  73   74   84   85   95    96
                            81  91   83   93   94   A4    A5
                                541  A1   B1   A3   B3    B4
                                     542  642  C1   D1    C3
                                     641  651  652  752   E1
                                          741  742  761   654
                                               751  842   762
                                               841  851   852
                                                    941   861
                                                    6521  942
                                                          951
                                                          A41
                                                          7521
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A007865/A085489/A151897 count certain types of sum-free subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A237667 counts sum-free partitions, ranks A364531.
A240861 counts strict partitions with length not a part, complement A240855.
A275972 counts strict knapsack partitions, non-strict A108917.
A364349 counts sum-free strict partitions, sum-full A364272.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365663 counts strict partitions without a subset-sum k, non-strict A046663.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]

A367219 Number of integer partitions of n whose length cannot be written as a nonnegative linear combination of the distinct parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 3, 2, 4, 4, 7, 6, 11, 9, 16, 16, 23, 22, 35, 33, 48, 50, 69, 70, 99, 99, 136, 142, 187, 194, 261, 267, 346, 367, 468, 489, 626, 650, 824, 870, 1081, 1135, 1421, 1485, 1833, 1942, 2374, 2501, 3062, 3220, 3915, 4145, 4987, 5274, 6363, 6709, 8027
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			3 cannot be written as a nonnegative linear combination of 2 and 5, so (5,2,2) is counted under a(9).
The a(2) = 1 through a(10) = 7 partitions:
  (2)  (3)  (4)  (5)  (6)      (7)    (8)      (9)      (10)
                      (3,3)    (4,3)  (4,4)    (5,4)    (5,5)
                      (2,2,2)         (5,3)    (6,3)    (6,4)
                                      (4,2,2)  (5,2,2)  (7,3)
                                                        (4,4,2)
                                                        (6,2,2)
                                                        (2,2,2,2,2)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A008284 counts partitions by length, strict A008289.
A124506 appears to count combination-free subsets, differences of A326083.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],combs[Length[#],Union[#]]=={}&]],{n,0,15}]

Extensions

a(31)-a(56) from Chai Wah Wu, Nov 15 2023

A367220 Number of strict integer partitions of n whose length (number of parts) can be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 3, 4, 5, 7, 7, 10, 11, 15, 17, 22, 25, 32, 37, 46, 53, 65, 75, 90, 105, 124, 143, 168, 193, 224, 258, 297, 340, 390, 446, 509, 580, 660, 751, 852, 967, 1095, 1240, 1401, 1584, 1786, 2015, 2269, 2554, 2869, 3226, 3617, 4056, 4541, 5084
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367218.

Examples

			The a(3) = 1 through a(10) = 7 strict partitions:
  (2,1)  (3,1)  (3,2)  (4,2)    (5,2)    (6,2)    (7,2)    (8,2)
                (4,1)  (5,1)    (6,1)    (7,1)    (8,1)    (9,1)
                       (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)  (5,3,2)
                                         (5,2,1)  (5,3,1)  (5,4,1)
                                                  (6,2,1)  (6,3,1)
                                                           (7,2,1)
                                                           (4,3,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]!={}&]], {n,0,15}]

A367221 Number of strict integer partitions of n whose length (number of parts) cannot be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 14, 17, 18, 23, 24, 29, 32, 37, 41, 49, 54, 63, 72, 82, 93, 108, 122, 139, 159, 180, 204, 231, 261, 293, 331, 370, 415, 464, 518, 575, 641, 710, 789, 871, 965, 1064, 1177, 1294, 1428, 1569, 1729, 1897
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367219.

Examples

			The a(2) = 1 through a(16) = 10 strict partitions (A..G = 10..16):
  2  3  4  5  6  7   8   9   A   B    C    D    E    F    G
                 43  53  54  64  65   75   76   86   87   97
                         63  73  74   84   85   95   96   A6
                                 83   93   94   A4   A5   B5
                                 542  642  A3   B3   B4   C4
                                           652  752  C3   D3
                                           742  842  654  754
                                                     762  862
                                                     852  952
                                                     942  A42
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
Triangles:
A008284 counts partitions by length, strict A008289.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365541 counts subsets containing two distinct elements summing to k.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]=={}&]], {n,0,30}]

A367223 Number of subsets of {1..n} whose cardinality cannot be written as a nonnegative linear combination of the elements.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 15, 27, 49, 90, 165, 301, 548, 998, 1819, 3316, 6040, 10986, 19959, 36253, 65904, 119986, 218796, 399461, 729752, 1333162, 2434411, 4441954, 8097478, 14746715, 26830230, 48773790, 88605927, 160900978, 292140427, 530487359, 963610200, 1751171679, 3183997509
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			3 cannot be written as a nonnegative linear combination of 2, 4, and 5, so {2,4,5} is counted under a(6).
The a(2) = 1 through a(6) = 15 subsets:
  {2}  {2}  {2}    {2}      {2}
       {3}  {3}    {3}      {3}
            {4}    {4}      {4}
            {3,4}  {5}      {5}
                   {3,4}    {6}
                   {3,5}    {3,4}
                   {4,5}    {3,5}
                   {2,4,5}  {3,6}
                            {4,5}
                            {4,6}
                            {5,6}
                            {2,4,5}
                            {2,4,6}
                            {2,5,6}
                            {4,5,6}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A116861 counts positive linear combinations of strict partitions of k.
A364916 counts linear combinations of strict partitions of k.
A366320 counts subsets without a subset summing to k, with A365381.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]], combs[Length[#],Union[#]]=={}&]], {n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A367223(n):
        c, mlist = 0, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(1,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for s in mlist[k-1]:
                    if s <= ws:
                        break
                else:
                    c += 1
        return c # Chai Wah Wu, Nov 16 2023

Formula

a(n) = 2^n - A367222(n).

Extensions

a(14)-a(33) from Chai Wah Wu, Nov 15 2023
a(34)-a(38) from Max Alekseyev, Feb 25 2025

A367227 Numbers m whose prime indices have no nonnegative linear combination equal to bigomega(m).

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 25, 27, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 63, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 99, 101, 103, 107, 109, 113, 115, 117, 119, 121, 127, 131, 133, 137, 139, 143, 145, 147, 149, 151, 153, 155, 157, 161, 163
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367219.

Examples

			The prime indices of 24 are {1,1,1,2} with (1+1+1+1) = 4 or (1+1)+(2) = 4 or (2+2) = 4, so 24 is not in the sequence.
The terms together with their prime indices begin:
     3: {2}        43: {14}        85: {3,7}
     5: {3}        47: {15}        89: {24}
     7: {4}        49: {4,4}       91: {4,6}
    11: {5}        53: {16}        95: {3,8}
    13: {6}        55: {3,5}       97: {25}
    17: {7}        59: {17}        99: {2,2,5}
    19: {8}        61: {18}       101: {26}
    23: {9}        63: {2,2,4}    103: {27}
    25: {3,3}      65: {3,6}      107: {28}
    27: {2,2,2}    67: {19}       109: {29}
    29: {10}       71: {20}       113: {30}
    31: {11}       73: {21}       115: {3,9}
    35: {3,4}      77: {4,5}      117: {2,2,6}
    37: {12}       79: {22}       119: {4,7}
    41: {13}       83: {23}       121: {5,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000700 counts self-conjugate partitions, ranks A088902.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124506 appears to count combination-free subsets, differences of A326083.
A229816 counts partitions whose length is not a part, ranks A367107.
A304792 counts subset-sums of partitions, strict A365925.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p], {k}]]]];
    combs[n_,y_]:=With[{s=Table[{k,i}, {k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Select[Range[100], combs[PrimeOmega[#], Union[prix[#]]]=={}&]

A365311 Number of strict integer partitions with sum <= n that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 11, 12, 20, 24, 35, 38, 63, 63, 92, 112, 148, 160, 230, 244, 339, 383, 478, 533, 726, 781, 978, 1123, 1394, 1526, 1960, 2112, 2630, 2945, 3518, 3964, 4856, 5261, 6307, 7099, 8464, 9258, 11140, 12155, 14419, 16093, 18589, 20565, 24342, 26597, 30948
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The strict partition (6,3) cannot be linearly combined to obtain 10, so is not counted under a(10).
The strict partition (4,2) has 6 = 1*4 + 1*2 so is counted under a(6), but (4,2) cannot be linearly combined to obtain 7 so is not counted under a(7).
The a(1) = 1 through a(7) = 12 strict partitions:
  (1)  (1)  (1)    (1)    (1)    (1)      (1)
       (2)  (3)    (2)    (5)    (2)      (7)
            (2,1)  (4)    (2,1)  (3)      (2,1)
                   (2,1)  (3,1)  (6)      (3,1)
                   (3,1)  (3,2)  (2,1)    (3,2)
                          (4,1)  (3,1)    (4,1)
                                 (3,2)    (4,3)
                                 (4,1)    (5,1)
                                 (4,2)    (5,2)
                                 (5,1)    (6,1)
                                 (3,2,1)  (3,2,1)
                                          (4,2,1)
		

Crossrefs

For positive coefficients we have A088314.
The positive complement is counted by A088528.
The version for subsets is A365073.
The complement is counted by A365312.
For non-strict partitions we have A365379.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Select[Join@@Array[IntegerPartitions,n],UnsameQ@@#&],combs[n,#]!={}&]],{n,10}]
  • Python
    from math import isqrt
    from sympy.utilities.iterables import partitions
    def A365311(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n+1) for b in partitions(m,m=isqrt(1+(n<<3))>>1) if max(b.values()) == 1 and any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(26)-a(50) from Chai Wah Wu, Sep 13 2023

A365320 Number of pairs of distinct positive integers <= n that cannot be linearly combined with nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1, 7, 5, 12, 12, 27, 14, 42, 36, 47, 47, 83, 58, 109, 80, 116, 126, 172, 111, 195, 192, 219, 202, 294, 210, 342, 286, 354, 369, 409, 324, 509, 480, 523, 452, 640, 507, 711, 622, 675, 747, 865, 654, 916, 842, 964, 922, 1124, 940, 1147, 1029
Offset: 0

Views

Author

Gus Wiseman, Sep 06 2023

Keywords

Comments

Are there only two cases of nonzero adjacent equal parts, at positions n = 9, 15?

Examples

			The pair p = (3,6) cannot be linearly combined to obtain 8 or 10, so p is counted under a(8) and a(10), but we have 9 = 1*3 + 1*6 or 9 = 3*3 + 0*6, so p not counted under a(9).
The a(5) = 2 through a(10) = 12 pairs:
  (2,4)  (4,5)  (2,4)  (3,6)  (2,4)  (3,6)
  (3,4)         (2,6)  (3,7)  (2,6)  (3,8)
                (3,5)  (5,6)  (2,8)  (3,9)
                (3,6)  (5,7)  (4,6)  (4,7)
                (4,5)  (6,7)  (4,7)  (4,8)
                (4,6)         (4,8)  (4,9)
                (5,6)         (5,6)  (6,7)
                              (5,7)  (6,8)
                              (5,8)  (6,9)
                              (6,7)  (7,8)
                              (6,8)  (7,9)
                              (7,8)  (8,9)
		

Crossrefs

The unrestricted version is A000217, ranks A001358.
For strict partitions we have A365312, complement A365311.
The (binary) complement is A365314, positive A365315.
The case of positive coefficients is A365321, for all subsets A365322.
For partitions we have A365378, complement A365379.
For all subsets instead of just pairs we have A365380, complement A365073.
A004526 counts partitions of length 2, shift right for strict.
A007865 counts sum-free subsets, complement A093971.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 appear to count combination-free subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n],{2}],combs[n,#]=={}&]],{n,0,30}]
  • Python
    from itertools import count
    from sympy import divisors
    def A365320(n):
        a = set()
        for i in range(1,n+1):
            if not n%i:
                a.update(tuple(sorted((i,j))) for j in range(1,n+1) if j!=i)
            else:
                for j in count(0,i):
                    if j > n:
                        break
                    k = n-j
                    for d in divisors(k):
                        if d>=i:
                            break
                        a.add((d,i))
        return (n*(n-1)>>1)-len(a) # Chai Wah Wu, Sep 13 2023

A088528 Let m = number of ways of partitioning n into parts using all the parts of a subset of {1, 2, ..., n-1} whose sum of all parts of a subset is less than n; a(n) gives number of different subsets of {1, 2, ..., n-1} whose m is 0.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 6, 6, 10, 12, 17, 18, 26, 30, 40, 44, 58, 66, 84, 95, 120, 135, 166, 186, 230, 257, 314, 350, 421, 476, 561, 626, 749, 831, 986, 1095, 1276, 1424, 1666, 1849, 2138, 2388, 2741, 3042, 3522, 3879, 4441, 4928, 5617, 6222, 7084, 7802, 8852, 9800
Offset: 1

Views

Author

Naohiro Nomoto, Nov 16 2003

Keywords

Comments

Note that {2, 3} is counted for n = 6 because although 6 = 2+2+2 = 3+3, there is no partition that includes both 2 and 3. - David Wasserman, Aug 09 2005
Said differently, a(n) is the number of finite nonempty sets of positive integers with sum < n that cannot be linearly combined using all positive coefficients to obtain n. - Gus Wiseman, Sep 10 2023

Examples

			a(5)=3 because there are three different subsets, {2}, {3} & {4}; a(6)=3 because there are three different subsets, {4}, {5} & {2,3}.
From _Gus Wiseman_, Sep 10 2023: (Start)
The set {3,5} is not counted under a(8) because 1*3 + 1*5 = 8, but it is counted under a(9) and a(10), and it is not counted under a(11) because 2*3 + 1*5 = 11.
The a(3) = 1 through a(11) = 17 subsets:
  {2}  {3}  {2}  {4}    {2}    {3}    {2}    {3}      {2}
            {3}  {5}    {3}    {5}    {4}    {4}      {3}
            {4}  {2,3}  {4}    {6}    {5}    {6}      {4}
                        {5}    {7}    {6}    {7}      {5}
                        {6}    {2,5}  {7}    {8}      {6}
                        {2,4}  {3,4}  {8}    {9}      {7}
                                      {2,4}  {2,5}    {8}
                                      {2,6}  {2,7}    {9}
                                      {3,4}  {3,5}    {10}
                                      {3,5}  {3,6}    {2,4}
                                             {4,5}    {2,6}
                                             {2,3,4}  {2,8}
                                                      {3,6}
                                                      {3,7}
                                                      {4,5}
                                                      {4,6}
                                                      {2,3,5}
(End)
		

Crossrefs

The complement is A088571, allowing sum n A088314.
For sets with max < n instead of sum < n we have A365045, nonempty A070880.
For nonnegative coefficients we have A365312, complement A365311.
For sets with max <= n we have A365322.
For partitions we have A365323, nonnegative A365378.
A116861 and A364916 count linear combinations of strict partitions.
A326083 and A124506 appear to count combination-free subsets.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Select[Subsets[Range[n]],0Gus Wiseman, Sep 12 2023 *)

Extensions

More terms from David Wasserman, Aug 09 2005
Showing 1-10 of 17 results. Next