A367213 Number of integer partitions of n whose length (number of parts) is not equal to the sum of any submultiset.
0, 0, 1, 1, 2, 2, 5, 4, 7, 8, 12, 13, 19, 21, 29, 33, 45, 49, 67, 73, 97, 108, 139, 152, 196, 217, 274, 303, 379, 420, 523, 579, 709, 786, 960, 1061, 1285, 1423, 1714, 1885, 2265, 2498, 2966, 3280, 3881, 4268, 5049, 5548, 6507, 7170, 8391, 9194, 10744, 11778, 13677
Offset: 0
Keywords
Examples
The a(3) = 1 through a(9) = 8 partitions: (3) (4) (5) (6) (7) (8) (9) (3,1) (4,1) (3,3) (4,3) (4,4) (5,4) (5,1) (6,1) (5,3) (6,3) (2,2,2) (5,1,1) (7,1) (8,1) (4,1,1) (4,2,2) (4,4,1) (6,1,1) (5,2,2) (5,1,1,1) (7,1,1) (6,1,1,1)
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..65
Crossrefs
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
Triangles:
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]
Extensions
a(41)-a(54) from Chai Wah Wu, Nov 13 2023
Comments