cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A364537 Heinz numbers of integer partitions where some part is the difference of two consecutive parts.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252, 258
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2023

Keywords

Comments

In other words, partitions whose parts are not disjoint from their first differences.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition {3,4,5,7} with Heinz number 6545 has first differences (1,1,2) so is not in the sequence.
The terms together with their prime indices begin:
   6: {1,2}
  12: {1,1,2}
  18: {1,2,2}
  21: {2,4}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  60: {1,1,2,3}
  63: {2,2,4}
  65: {3,6}
  66: {1,2,5}
  70: {1,3,4}
  72: {1,1,1,2,2}
  78: {1,2,6}
  84: {1,1,2,4}
  90: {1,2,2,3}
  96: {1,1,1,1,1,2}
		

Crossrefs

For all differences of pairs the complement is A364347, counted by A364345.
For all differences of pairs we have A364348, counted by A363225.
Subsets of {1..n} of this type are counted by A364466, complement A364463.
These partitions are counted by A364467, complement A363260.
The strict case is A364536, complement A364464.
A050291 counts double-free subsets, complement A088808.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Differences[prix[#]]]!={}&]

A365379 Number of integer partitions with sum <= n whose distinct parts can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 1, 3, 5, 10, 14, 27, 35, 61, 83, 128, 166, 264, 327, 482, 632, 882, 1110, 1565, 1938, 2663, 3339, 4401, 5471, 7290, 8921, 11555, 14291, 18280, 22303, 28507, 34507, 43534, 52882, 65798, 79621, 98932, 118629, 146072, 175562, 214708, 256351, 312583, 371779
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The partition (4,2,2) cannot be linearly combined to obtain 9, so is not counted under a(9). On the other hand, the same partition (4,2,2) has distinct parts {2,4} and has 10 = 1*2 + 2*4, so is counted under a(10).
The a(1) = 1 through a(5) = 14 partitions:
  (1)  (1)   (1)    (1)     (1)
       (2)   (3)    (2)     (5)
       (11)  (11)   (4)     (11)
             (21)   (11)    (21)
             (111)  (21)    (31)
                    (22)    (32)
                    (31)    (41)
                    (111)   (111)
                    (211)   (211)
                    (1111)  (221)
                            (311)
                            (1111)
                            (2111)
                            (11111)
		

Crossrefs

For subsets with positive coefficients we have A088314, complement A088528.
The case of strict partitions with positive coefficients is also A088314.
The version for subsets is A365073, complement A365380.
The case of strict partitions is A365311, complement A365312.
The complement is counted by A365378.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@Array[IntegerPartitions,n],combs[n,Union[#]]!={}&]],{n,0,10}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365379(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n+1) for b in partitions(m) if any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(21)-a(43) from Chai Wah Wu, Sep 13 2023

A364673 Number of (necessarily strict) integer partitions of n containing all of their own first differences.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 2, 2, 5, 2, 2, 4, 2, 3, 6, 4, 4, 8, 4, 4, 10, 8, 7, 8, 13, 9, 15, 12, 13, 17, 20, 15, 31, 24, 27, 32, 33, 32, 50, 42, 45, 53, 61, 61, 85, 76, 86, 101, 108, 118, 137, 141, 147, 179, 184, 196, 222, 244, 257, 295, 324, 348, 380, 433
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2023

Keywords

Examples

			The partition y = (12,6,3,2,1) has differences (6,3,1,1), and {1,3,6} is a subset of {1,2,3,6,12}, so y is counted under a(24).
The a(n) partitions for n = 1, 3, 6, 12, 15, 18, 21:
  (1)  (3)    (6)      (12)       (15)         (18)         (21)
       (2,1)  (4,2)    (8,4)      (10,5)       (12,6)       (14,7)
              (3,2,1)  (6,4,2)    (8,4,2,1)    (9,6,3)      (12,6,3)
                       (5,4,2,1)  (5,4,3,2,1)  (6,5,4,2,1)  (8,6,4,2,1)
                       (6,3,2,1)               (7,5,3,2,1)  (9,5,4,2,1)
                                               (8,4,3,2,1)  (9,6,3,2,1)
                                                            (10,5,3,2,1)
                                                            (6,5,4,3,2,1)
		

Crossrefs

Containing all differences: A007862.
Containing no differences: A364464, strict complement A364536.
Containing at least one difference: A364467, complement A363260.
For subsets of {1..n} we have A364671, complement A364672.
A non-strict version is A364674.
For submultisets instead of subsets we have A364675.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions w/o re-used parts, complement A237113.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SubsetQ[#,-Differences[#]]&]],{n,0,30}]
  • Python
    from collections import Counter
    def A364673_list(maxn):
        count = Counter()
        for i in range(maxn//3):
            A,f,i = [[(i+1, )]],0,0
            while f == 0:
                A.append([])
                for j in A[i]:
                    for k in j:
                        x = j + (j[-1] + k, )
                        y = sum(x)
                        if y <= maxn:
                            A[i+1].append(x)
                            count.update({y})
                if len(A[i+1]) < 1: f += 1
                i += 1
        return [count[z]+1 for z in range(maxn+1)] # John Tyler Rascoe, Mar 09 2024

A365070 Number of subsets of {1..n} containing n and some element equal to the sum of two other (possibly equal) elements.

Original entry on oeis.org

0, 0, 1, 1, 5, 9, 24, 46, 109, 209, 469, 922, 1932, 3858, 7952, 15831, 32214, 64351, 129813, 259566, 521681, 1042703, 2091626, 4182470, 8376007, 16752524, 33530042, 67055129, 134165194, 268328011, 536763582, 1073523097, 2147268041, 4294505929, 8589506814, 17178978145
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

These are binary sum-full sets where elements can be re-used. The complement is counted by A288728. The non-binary version is A365046, complement A124506. For non-re-usable parts we have A364756, complement A085489.

Examples

			The subset {1,3} has no element equal to the sum of two others, so is not counted under a(3).
The subset {3,4,5} has no element equal to the sum of two others, so is not counted under a(5).
The subset {1,3,4} has 4 = 1 + 3, so is counted under a(4).
The subset {2,4,5} has 4 = 2 + 2, so is counted under a(5).
The a(0) = 0 through a(5) = 9 subsets:
  .  .  {1,2}  {1,2,3}  {2,4}      {1,2,5}
                        {1,2,4}    {1,4,5}
                        {1,3,4}    {2,3,5}
                        {2,3,4}    {2,4,5}
                        {1,2,3,4}  {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The complement w/o re-usable parts is A085489, first differences of A364755.
First differences of A093971.
The non-binary complement is A124506, first differences of A326083.
The complement is counted by A288728, first differences of A007865.
For partitions (not requiring n) we have A363225, strict A363226.
The case without re-usable parts is A364756, firsts differences of A088809.
The non-binary version is A365046, first differences of A364914.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.
A365006 counts no positive combination-full strict ptns.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#,Total /@ Tuples[#,2]]!={}&]], {n,0,10}]

Formula

First differences of A093971.

Extensions

a(21) onwards added (using A093971) by Andrew Howroyd, Jan 13 2024

A367394 Number of integer partitions of n whose length is a semi-sum of the parts.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 3, 6, 7, 14, 15, 25, 30, 46, 54, 80, 97, 139, 169, 229, 282, 382, 461, 607, 746, 962, 1173, 1499, 1817, 2302, 2787, 3467, 4201, 5216, 6260, 7702, 9261, 11294, 13524, 16418, 19572, 23658, 28141, 33756, 40081, 47949, 56662, 67493, 79639
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			For the partition y = (3,3,2,1) we have 4 = 3 + 1, so y is counted under a(9).
The a(2) = 1 through a(10) = 14 partitions:
  (11)  .  (211)  (221)  (321)   (421)   (521)    (621)    (721)
                         (2211)  (2221)  (2222)   (3222)   (3322)
                         (3111)  (3211)  (3221)   (3321)   (3331)
                                         (3311)   (4221)   (4222)
                                         (32111)  (4311)   (4321)
                                         (41111)  (32211)  (5221)
                                                  (42111)  (5311)
                                                           (32221)
                                                           (33211)
                                                           (42211)
                                                           (43111)
                                                           (331111)
                                                           (421111)
                                                           (511111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A236912 counts partitions containing no semi-sum, ranks A364461.
A237113 counts partitions containing a semi-sum, ranks A364462.
A237668 counts sum-full partitions, sum-free A237667.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A008284 counts partitions by length, strict A008289.
A365543 counts partitions with a subset-sum k, strict A365661.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#,{2}], Length[#]]&]], {n,0,10}]

A367395 Number of strict integer partitions of n whose length is the sum of two distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 5, 5, 7, 8, 11, 13, 17, 19, 25, 28, 35, 41, 49, 57, 68, 78, 92, 107, 124, 143, 166, 192, 220, 254, 291, 335, 382, 439, 499, 572, 649, 741, 840, 956, 1080, 1226, 1383, 1566, 1762, 1988, 2235, 2515, 2822, 3166, 3547
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Examples

			The strict partition (5,3,2,1) has 4 = 3 + 1 so is counted under a(11).
The a(6) = 1 through a(17) = 7 strict partitions (A..E = 10..14):
  321  421  521  621  721   821   921   A21   B21   C21    D21    E21
                      4321  5321  6321  5431  6431  6531   7531   7631
                                        7321  8321  7431   8431   8531
                                                    9321   A321   9431
                                                    54321  64321  B321
                                                                  65321
                                                                  74321
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A088809/A093971 count twofold sum-full subsets.
A236912 counts partitions containing no semi-sum, ranks A364461.
A237113 counts partitions containing a semi-sum, ranks A364462.
A237668 counts sum-full partitions, sum-free A237667.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A008284 counts partitions by length, strict A008289.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#,{2}], Length[#]]&]], {n,0,30}]

A367396 Number of subsets of {1..n} whose cardinality is the sum of two distinct elements.

Original entry on oeis.org

0, 0, 0, 1, 3, 7, 17, 40, 90, 199, 435, 939, 2007, 4258, 8976, 18817, 39263, 81595, 168969, 348820, 718134, 1474863, 3022407, 6181687, 12621135, 25727686, 52369508, 106460521, 216162987, 438431215, 888359841, 1798371648, 3637518354, 7351824439, 14848255803
Offset: 0

Views

Author

Gus Wiseman, Nov 21 2023

Keywords

Examples

			The set s = {1,2,3,6,7,8} has the following sums of pairs of distinct elements: {3,4,5,7,8,9,10,11,13,14,15}. This does not include 6, so s is not counted under a(8).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,2,3}    {1,2,3}      {1,2,3}
                    {1,2,4}    {1,2,4}      {1,2,4}
                    {1,2,3,4}  {1,2,5}      {1,2,5}
                               {1,2,3,4}    {1,2,6}
                               {1,2,3,5}    {1,2,3,4}
                               {1,3,4,5}    {1,2,3,5}
                               {1,2,3,4,5}  {1,2,3,6}
                                            {1,3,4,5}
                                            {1,3,4,6}
                                            {1,3,5,6}
                                            {1,2,3,4,5}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A002865 counts partitions whose length is a part, complement A229816.
A364534 counts sum-full subsets.
A088809 and A093971 count subsets containing semi-sums.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A365381 counts subsets with a subset summing to k, complement A366320.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#,{2}],Length[#]]&]],{n,0,10}]
  • Python
    from itertools import combinations
    def A367396(n): return sum(1 for k in range(3,n+1) for w in (set(d) for d in combinations(range(1,n+1),k)) if any({a,k-a}<=w for a in range(1,k+1>>1))) # Chai Wah Wu, Nov 21 2023

Formula

Conjectures from Chai Wah Wu, Nov 21 2023: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 4*a(n-3) - 5*a(n-4) + 2*a(n-5) for n > 4.
G.f.: x^3*(x - 1)/((2*x - 1)*(x^4 - 2*x^3 + x^2 - 2*x + 1)). (End)

Extensions

a(18)-a(33) from Chai Wah Wu, Nov 21 2023
a(34) from Paul Muljadi, Nov 24 2023

A367397 Numbers m such that bigomega(m) is the sum of prime indices of some semiprime divisor of m.

Original entry on oeis.org

4, 12, 18, 30, 36, 40, 42, 54, 60, 66, 78, 81, 90, 100, 102, 112, 114, 120, 126, 135, 138, 140, 150, 168, 174, 180, 186, 189, 198, 210, 220, 222, 225, 234, 246, 250, 252, 258, 260, 270, 280, 282, 297, 300, 306, 315, 318, 330, 336, 340, 342, 350, 351, 352, 354
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367394.

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A325761 ranks partitions whose length is a part, counted by A002865.
A088809 and A093971 count subsets containing semi-sums.
A236912 counts partitions with no semi-sum of the parts, ranks A364461.
A237113 counts partitions with a semi-sum of the parts, ranks A364462.
A304792 counts subset-sums of partitions, strict A365925.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A365381 counts subsets with a subset summing to k, complement A366320.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],MemberQ[Total/@Subsets[prix[#],{2}],PrimeOmega[#]]&]

A367398 Number of integer partitions of n whose length is not a semi-sum of the parts.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 8, 12, 16, 23, 28, 41, 52, 71, 89, 122, 151, 200, 246, 321, 398, 510, 620, 794, 968, 1212, 1474, 1837, 2219, 2748, 3302, 4055, 4882, 5942, 7094, 8623, 10275, 12376, 14721, 17661, 20920, 25011, 29516, 35120, 41419, 49053, 57609, 68092, 79780
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			For the partition y = (4,3,1) we have semi-sums {4,5,7}, which do not include 3 (the length of y), so y is counted under a(8).
The a(1) = 1 through a(8) = 16 partitions:
  (1)  (2)  (3)    (4)     (5)      (6)       (7)        (8)
            (21)   (22)    (32)     (33)      (43)       (44)
            (111)  (31)    (41)     (42)      (52)       (53)
                   (1111)  (311)    (51)      (61)       (62)
                           (2111)   (222)     (322)      (71)
                           (11111)  (411)     (331)      (332)
                                    (21111)   (511)      (422)
                                    (111111)  (4111)     (431)
                                              (22111)    (611)
                                              (31111)    (4211)
                                              (211111)   (5111)
                                              (1111111)  (22211)
                                                         (221111)
                                                         (311111)
                                                         (2111111)
                                                         (11111111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A236912 counts partitions containing no semi-sum, ranks A364461.
A237113 counts partitions containing a semi-sum, ranks A364462.
A237667 counts sum-free partitions, sum-full A237668.
A366738 counts semi-sums of partitions, strict A366741.
A367402 counts partitions with covering semi-sums, complement A367403.
Triangles:
A008284 counts partitions by length, strict A008289.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Total/@Subsets[#,{2}],Length[#]]&]],{n,0,10}]

A367399 Number of strict integer partitions of n whose length is not the sum of any two distinct parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 10, 13, 15, 19, 22, 27, 31, 38, 43, 51, 59, 70, 79, 94, 107, 124, 143, 165, 188, 218, 248, 283, 324, 369, 419, 476, 540, 610, 691, 778, 878, 987, 1111, 1244, 1399, 1563, 1750, 1954, 2184, 2432, 2714, 3016, 3358, 3730, 4143
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Examples

			The strict partition y = (6,4,2,1) has semi-sums {3,5,6,7,8,10}, which do not include 4, so y is counted under a(13).
The a(6) = 3 through a(13) = 15 strict partitions:
  (6)    (7)    (8)      (9)      (10)     (11)     (12)       (13)
  (4,2)  (4,3)  (5,3)    (5,4)    (6,4)    (6,5)    (7,5)      (7,6)
  (5,1)  (5,2)  (6,2)    (6,3)    (7,3)    (7,4)    (8,4)      (8,5)
         (6,1)  (7,1)    (7,2)    (8,2)    (8,3)    (9,3)      (9,4)
                (4,3,1)  (8,1)    (9,1)    (9,2)    (10,2)     (10,3)
                         (4,3,2)  (5,3,2)  (10,1)   (11,1)     (11,2)
                         (5,3,1)  (5,4,1)  (5,4,2)  (5,4,3)    (12,1)
                                  (6,3,1)  (6,3,2)  (6,4,2)    (6,4,3)
                                           (6,4,1)  (6,5,1)    (6,5,2)
                                           (7,3,1)  (7,3,2)    (7,4,2)
                                                    (7,4,1)    (7,5,1)
                                                    (8,3,1)    (8,3,2)
                                                    (5,4,2,1)  (8,4,1)
                                                               (9,3,1)
                                                               (6,4,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A365924 counts incomplete partitions, strict A365831.
A236912 counts partitions with no semi-sum of the parts, ranks A364461.
A237667 counts sum-free partitions, sum-full A237668.
A366738 counts semi-sums of partitions, strict A366741.
A367403 counts partitions without covering semi-sums, strict A367411.
Triangles:
A008284 counts partitions by length, strict A008289.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#,{2}], Length[#]]&]], {n,0,15}]
Previous Showing 31-40 of 49 results. Next