A363741 Number of factorizations of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.
0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
The factorization 6*9*9*12 = 5832 has mean 9, median 9, and modes {9}, so it is counted under a(5832). The a(n) factorizations for selected n: 2 4 16 64 5832 4096 2*2 4*4 8*8 18*18*18 64*64 2*2*2*2 4*4*4 6*9*9*12 8*8*8*8 2*2*2*2*2*2 3*6*6*6*9 16*16*16 2*3*3*3*3*3*3*4 4*4*4*4*4*4 2*2*2*2*2*2*2*2*2*2*2*2
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[facs[n],{Mean[#]}=={Median[#]}==modes[#]&]],{n,100}]
Comments