cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 57 results. Next

A237194 Triangular array: T(n,k) = number of strict partitions P of n into positive parts such that P includes a partition of k.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 1, 3, 2, 2, 1, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 3, 2, 3, 1, 3, 2, 3, 6, 3, 3, 4, 3, 3, 4, 3, 3, 8, 5, 4, 5, 4, 3, 4, 5, 4, 5, 10, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 12, 7, 6, 7, 7, 7, 4, 7, 7, 7, 6, 7, 15, 8, 7, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Examples

			First 13 rows:
1
0 1
1 1 2
1 0 1 2
1 1 1 1 3
2 2 1 2 2 4
2 2 2 2 2 2 5
3 2 3 1 3 2 3 6
3 3 4 3 3 4 3 3 8
5 4 5 4 3 4 5 4 5 10
5 5 5 5 5 5 5 5 5 5 12
7 6 7 7 7 4 7 7 7 6 7 15
8 7 8 8 8 8 8 8 8 8 7 8 18
T(12,4) = 7 counts these partitions:  [8,4], [8,3,1], [7,4,1], [6,4,2], [6,3,2,1], [5,4,3], [5,4,2,1].
		

Crossrefs

Column k = n is A000009.
Column k = 2 is A015744.
Column k = 1 is A025147.
The non-strict complement is obtained by adding zeros after A046663.
Diagonal n = 2k is A237258.
Row sums are A284640.
For subsets instead of partitions we have A365381.
The non-strict version is obtained by removing column k = 0 from A365543.
Including column k = 0 gives A365661.
The complement is obtained by adding zeros after A365663.

Programs

  • Mathematica
    Table[theTotals = Map[{#, Map[Total, Subsets[#]]} &, Select[IntegerPartitions[nn], # == DeleteDuplicates[#] &]]; Table[Length[Map[#[[1]] &, Select[theTotals, Length[Position[#[[2]], sumTo]] >= 1 &]]], {sumTo, nn}], {nn, 45}] // TableForm
    u = Flatten[%]  (* Peter J. C. Moses, Feb 04 2014 *)
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#], k]&]], {n,6}, {k,n}] (* Gus Wiseman, Nov 16 2023 *)

Formula

T(n,k) = T(n,n-k) for k=1..n-1, n >= 2.

A365659 Number of strict integer partitions of n that either have (1) length 2, or (2) greatest part n/2.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 3, 4, 4, 6, 5, 8, 6, 10, 7, 12, 8, 15, 9, 18, 10, 21, 11, 25, 12, 29, 13, 34, 14, 40, 15, 46, 16, 53, 17, 62, 18, 71, 19, 82, 20, 95, 21, 109, 22, 125, 23, 144, 24, 165, 25, 189, 26, 217, 27, 248, 28, 283, 29, 324
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Also the number of strict integer partitions of n containing two possibly equal elements summing to n.

Examples

			The a(3) = 1 through a(11) = 5 partitions:
  (2,1)  (3,1)  (3,2)  (4,2)    (4,3)  (5,3)    (5,4)  (6,4)    (6,5)
                (4,1)  (5,1)    (5,2)  (6,2)    (6,3)  (7,3)    (7,4)
                       (3,2,1)  (6,1)  (7,1)    (7,2)  (8,2)    (8,3)
                                       (4,3,1)  (8,1)  (9,1)    (9,2)
                                                       (5,3,2)  (10,1)
                                                       (5,4,1)
		

Crossrefs

Without repeated parts we have A140106.
The non-strict version is A238628.
For subsets instead of strict partitions we have A365544.
A000009 counts subsets summing to n.
A365046 counts combination-full subsets, differences of A364914.
A365543 counts partitions of n with a submultiset summing to k.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(Length[#]==2||Max@@#==n/2)&]], {n,0,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365659(n): return n>>1 if n&1 or n==0 else (m:=n>>1)+sum(1 for p in partitions(m) if max(p.values(),default=1)==1)-2 # Chai Wah Wu, Sep 18 2023

Formula

a(n) = (n-1)/2 if n is odd. a(n) = n/2 + A000009(n/2) - 2 if n is even and n > 0. - Chai Wah Wu, Sep 18 2023

A365825 Number of integer partitions of n that are not of length 2 and do not contain n/2.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 6, 12, 14, 26, 31, 51, 61, 95, 114, 169, 202, 289, 347, 481, 576, 782, 936, 1244, 1487, 1946, 2323, 2997, 3570, 4551, 5414, 6827, 8103, 10127, 11997, 14866, 17575, 21619, 25507, 31166, 36692, 44563, 52362, 63240, 74152, 89112, 104281, 124731
Offset: 0

Views

Author

Gus Wiseman, Sep 19 2023

Keywords

Comments

Also the number of integer partitions of n with no two possibly equal parts summing to n.

Examples

			The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)  (3)    (4)     (5)      (6)       (7)        (8)
            (111)  (1111)  (221)    (222)     (322)      (332)
                           (311)    (411)     (331)      (521)
                           (2111)   (2211)    (421)      (611)
                           (11111)  (21111)   (511)      (2222)
                                    (111111)  (2221)     (3221)
                                              (3211)     (3311)
                                              (4111)     (5111)
                                              (22111)    (22211)
                                              (31111)    (32111)
                                              (211111)   (221111)
                                              (1111111)  (311111)
                                                         (2111111)
                                                         (11111111)
		

Crossrefs

First condition alone is A058984, complement A004526, ranks A100959.
Second condition alone is A086543, complement A035363, ranks !A344415.
The complement is counted by A238628.
The strict case is A365826, complement A365659.
A000041 counts integer partitions, strict A000009.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A140106 counts strict partitions of length 2, complement A365827.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]!=2&&FreeQ[#,n/2]&]],{n,0,15}]
  • Python
    from sympy import npartitions
    def A365825(n): return npartitions(n)-(m:=n>>1)-(0 if n&1 else npartitions(m)-1) # Chai Wah Wu, Sep 23 2023

Formula

Heinz numbers are A100959 /\ !A344415.
a(n) = A000041(n)-(n-1)/2 if n is odd. a(n) = A000041(n)-n/2-A000041(n/2)+1 if n is even. - Chai Wah Wu, Sep 23 2023

Extensions

a(31)-a(47) from Chai Wah Wu, Sep 23 2023

A367402 Number of integer partitions of n whose semi-sums cover an interval of positive integers.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 10, 13, 17, 20, 26, 31, 38, 44, 58, 64, 81, 95, 116, 137, 166, 192, 233, 278, 330, 385, 459, 542, 636, 759, 879, 1038, 1211, 1418, 1656, 1942, 2242, 2618, 3029, 3535, 4060, 4735, 5429, 6299, 7231, 8346, 9556, 11031, 12593, 14482, 16525
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (3,2,1,1) has semi-sums {2,3,4,5}, which is an interval, so y is counted under a(7).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (221)    (51)      (61)       (62)
                    (1111)  (2111)   (222)     (322)      (71)
                            (11111)  (321)     (2221)     (332)
                                     (2211)    (3211)     (2222)
                                     (21111)   (22111)    (3221)
                                     (111111)  (211111)   (22211)
                                               (1111111)  (32111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of sums we have A034296, ranks A073491.
For all subset-sums we have A126796, ranks A325781, strict A188431.
The complement for parts instead of sums is A239955, ranks A073492.
The complement for all sub-sums is A365924, ranks A365830, strict A365831.
The complement is counted by A367403.
The strict case is A367410, complement A367411.
A000009 counts partitions covering an initial interval, ranks A055932.
A086971 counts semi-sums of prime indices.
A261036 counts complete partitions by maximum.
A276024 counts positive subset-sums of partitions, strict A284640.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], (d=Total/@Subsets[#,{2}];If[d=={}, {}, Range[Min@@d,Max@@d]]==Union[d])&]], {n,0,15}]

A367403 Number of integer partitions of n whose semi-sums do not cover an interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 5, 9, 13, 22, 30, 46, 63, 91, 118, 167, 216, 290, 374, 490, 626, 810, 1022, 1297, 1628, 2051, 2551, 3176, 3929, 4845, 5963, 7311, 8932, 10892, 13227, 16035, 19395, 23397, 28156, 33803, 40523, 48439, 57832, 68876, 81903, 97212, 115198
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The a(0) = 0 through a(9) = 13 partitions:
  .  .  .  .  .  (311)  (411)   (331)    (422)     (441)
                        (3111)  (421)    (431)     (522)
                                (511)    (521)     (531)
                                (4111)   (611)     (621)
                                (31111)  (3311)    (711)
                                         (4211)    (4311)
                                         (5111)    (5211)
                                         (41111)   (6111)
                                         (311111)  (33111)
                                                   (42111)
                                                   (51111)
                                                   (411111)
                                                   (3111111)
		

Crossrefs

The complement for parts instead of sums is A034296, ranks A073491.
The complement for all sub-sums is A126796, ranks A325781, strict A188431.
For parts instead of sums we have A239955, ranks A073492.
For all subset-sums we have A365924, ranks A365830, strict A365831.
The complement is counted by A367402.
The strict case is A367411, complement A367410.
A000009 counts partitions covering an initial interval, ranks A055932.
A086971 counts semi-sums of prime indices.
A261036 counts complete partitions by maximum.
A276024 counts positive subset-sums of partitions, strict A284640.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], (d=Total/@Subsets[#,{2}];If[d=={}, {}, Range[Min@@d,Max@@d]]!=Union[d])&]], {n,0,15}]

A367410 Number of strict integer partitions of n whose semi-sums cover an interval of positive integers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 4, 6, 6, 7, 7, 8, 8, 11, 9, 11, 11, 12, 12, 15, 14, 15, 16, 16, 16, 19, 18, 19, 22, 21, 21, 24, 22, 25, 26, 26, 26, 30, 28, 29, 32, 31, 32, 37, 35, 36, 38, 39, 39, 43, 42, 43, 47, 46, 49, 51, 52, 51, 58
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is not counted under a(7).
The a(1) = 1 through a(9) = 6 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)    (8)    (9)
            (2,1)  (3,1)  (3,2)  (4,2)    (4,3)  (5,3)  (5,4)
                          (4,1)  (5,1)    (5,2)  (6,2)  (6,3)
                                 (3,2,1)  (6,1)  (7,1)  (7,2)
                                                        (8,1)
                                                        (4,3,2)
		

Crossrefs

For parts instead of sums we have A001227:
- non-strict A034296, ranks A073491
- complement A238007
- non-strict complement A239955, ranks A073492
The non-binary version is A188431:
- non-strict A126796, ranks A325781
- complement A365831
- non-strict complement A365924, ranks A365830
The non-strict version is A367402.
The non-strict complement is A367403.
The complement is counted by A367411.
A000009 counts partitions covering an initial interval, ranks A055932.
A046663 counts partitions w/o submultiset summing to k, strict A365663.
A365543 counts partitions w/ submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#,{2}]; If[d=={},{}, Range[Min@@d, Max@@d]]==Union[d])&]], {n,0,30}]

A367411 Number of strict integer partitions of n whose semi-sums do not cover an interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 4, 5, 8, 10, 14, 16, 23, 27, 35, 42, 52, 61, 75, 89, 106, 126, 149, 173, 204, 237, 274, 319, 369, 424, 490, 560, 642, 734, 838, 952, 1085, 1231, 1394, 1579, 1784, 2011, 2269, 2554, 2872, 3225, 3619, 4054, 4540, 5077, 5671, 6332
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is counted under a(7).
The a(7) = 1 through a(13) = 10 partitions:
  (4,2,1)  (4,3,1)  (5,3,1)  (5,3,2)  (5,4,2)  (6,4,2)    (6,4,3)
           (5,2,1)  (6,2,1)  (5,4,1)  (6,3,2)  (6,5,1)    (6,5,2)
                             (6,3,1)  (6,4,1)  (7,3,2)    (7,4,2)
                             (7,2,1)  (7,3,1)  (7,4,1)    (7,5,1)
                                      (8,2,1)  (8,3,1)    (8,3,2)
                                               (9,2,1)    (8,4,1)
                                               (5,4,2,1)  (9,3,1)
                                               (6,3,2,1)  (10,2,1)
                                                          (6,4,2,1)
                                                          (7,3,2,1)
		

Crossrefs

For parts instead of sums we have A238007:
- complement A001227
- non-strict complement A034296, ranks A073491
- non-strict A239955, ranks A073492
The non-strict version is A367403.
The non-strict complement is A367402.
The complement is counted by A367410.
The non-binary version is A365831:
- non-strict complement A126796, ranks A325781
- complement A188431
- non-strict A365924, ranks A365830
A000009 counts partitions covering an initial interval, ranks A055932.
A046663 counts partitions w/o submultiset summing to k, strict A365663.
A365543 counts partitions w/ submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#, {2}];If[d=={},{}, Range[Min@@d,Max@@d]]!=Union[d])&]], {n,0,30}]

A371839 Number of integer partitions of n with biquanimous multiplicities.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 22, 29, 38, 52, 66, 88, 114, 147, 186, 245, 302, 389, 486, 613, 757, 960, 1172, 1466, 1790, 2220, 2695, 3332, 4013, 4926, 5938, 7228, 8660, 10519, 12545, 15151, 18041, 21663, 25701, 30774, 36361, 43359, 51149, 60720, 71374
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The partition y = (6,2,1,1) has multiplicities (1,1,2), which are biquanimous because we have the partition ((1,1),(2)), so y is counted under a(10).
The a(0) = 1 through a(10) = 11 partitions:
  ()  .  .  (21)  (31)  (32)  (42)    (43)    (53)    (54)      (64)
                        (41)  (51)    (52)    (62)    (63)      (73)
                              (2211)  (61)    (71)    (72)      (82)
                                      (3211)  (3221)  (81)      (91)
                                              (3311)  (3321)    (3322)
                                              (4211)  (4221)    (4321)
                                                      (4311)    (4411)
                                                      (5211)    (5221)
                                                      (222111)  (5311)
                                                                (6211)
                                                                (322111)
		

Crossrefs

For parts instead of multiplicities we have A002219 aerated, ranks A357976.
These partitions have Heinz numbers A371781.
The complement for parts instead of multiplicities is counted by A371795, ranks A371731, bisections A006827, A058695.
The complement is counted by A371840, ranks A371782.
A237258 = biquanimous strict partitions, ranks A357854, complement A371794.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371783 counts k-quanimous partitions.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[IntegerPartitions[n], biqQ[Length/@Split[#]]&]],{n,0,30}]

A371840 Number of integer partitions of n with non-biquanimous multiplicities.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 8, 11, 16, 21, 31, 40, 55, 72, 97, 124, 165, 209, 271, 343, 441, 547, 700, 866, 1089, 1345, 1679, 2050, 2546, 3099, 3814, 4622, 5654, 6811, 8297, 9957, 12039, 14409, 17355, 20666, 24793, 29432, 35133, 41598, 49474, 58360, 69197, 81395, 96124
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The partition y = (6,2,1,1) has multiplicities (1,1,2), which are biquanimous because we have the partition ((1,1),(2)), so y is not counted under a(10).
The a(1) = 1 through a(8) = 16 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (321)     (421)      (422)
                            (11111)  (411)     (511)      (431)
                                     (3111)    (2221)     (521)
                                     (21111)   (4111)     (611)
                                     (111111)  (22111)    (2222)
                                               (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The complement for parts is counted by A002219 aerated, ranks A357976.
These partitions have Heinz numbers A371782.
For parts we have A371795, ranks A371731, bisections A006827, A058695.
The complement is counted by A371839, ranks A371781.
A237258 = biquanimous strict partitions, ranks A357854, complement A371794.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371783 counts k-quanimous partitions.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[IntegerPartitions[n], !biqQ[Length/@Split[#]]&]],{n,0,30}]

A365660 Number of integer partitions of 2n with exactly n distinct sums of nonempty submultisets.

Original entry on oeis.org

1, 1, 1, 3, 2, 6, 6, 16, 12, 20, 26, 59, 45, 79, 94, 186, 142, 231, 244, 442, 470, 616, 746, 1340, 1053, 1548, 1852, 2780, 2826, 3874, 4320, 6617, 6286, 7924, 9178, 13180, 13634, 17494, 20356, 28220, 29176, 37188, 41932, 56037
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Are n = 1, 2, 4 the only n such that none of these partitions has 1?
Are n = 2, 4, 5, 8, 9 the only n such that none of these partitions is strict?

Examples

			The partition (433) has sums 3, 4, 6, 7, 10 so is counted under a(5).
The a(1) = 1 through a(7) = 16 partitions:
(2)  (2,2)  (4,2)    (4,2,2)    (4,3,3)      (6,4,2)        (6,5,3)
            (5,1)    (2,2,2,2)  (4,4,2)      (6,5,1)        (8,4,2)
            (2,2,2)             (6,2,2)      (4,4,2,2)      (8,5,1)
                                (8,1,1)      (6,2,2,2)      (9,3,2)
                                (4,2,2,2)    (4,2,2,2,2)    (9,4,1)
                                (2,2,2,2,2)  (2,2,2,2,2,2)  (10,3,1)
                                                            (11,2,1)
                                                            (4,4,4,2)
                                                            (5,3,3,3)
                                                            (6,4,2,2)
                                                            (8,2,2,2)
                                                            (11,1,1,1)
                                                            (4,4,2,2,2)
                                                            (6,2,2,2,2)
                                                            (4,2,2,2,2,2)
                                                            (2,2,2,2,2,2,2)
		

Crossrefs

For n instead of 2n we have A126796.
Central column n = 2k of A365658.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A002219 counts partitions of 2n with a submultiset summing to n.
A046663 counts partitions of n w/o a submultiset of sum k, strict A365663.
A122768 counts distinct nonempty submultisets of partitions.
A299701 counts sums of submultisets of prime indices, of partitions A304792.
A364272 counts sum-full strict partitions, sum-free A364349.
A365543 counts partitions of n w/ a submultiset of sum k, strict A365661.

Programs

  • Mathematica
    msubs[y_]:=primeMS/@Divisors[Times@@Prime/@y];
    Table[Length[Select[IntegerPartitions[2n], Length[Union[Total/@Rest[msubs[#]]]]==n&]],{n,0,10}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_combinations
    def A365660(n):
        c = 0
        for p in partitions(n<<1):
            q, s = list(Counter(p).elements()), set()
            for l in range(1,len(q)+1):
                for k in multiset_combinations(q,l):
                    s.add(sum(k))
                    if len(s) > n:
                        break
                else:
                    continue
                break
            if len(s)==n:
                c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(21)-a(38) from Chai Wah Wu, Sep 20 2023
a(39)-a(43) from Chai Wah Wu, Sep 21 2023
Previous Showing 41-50 of 57 results. Next