A367904
Number of sets of nonempty subsets of {1..n} with only one possible way to choose a sequence of different vertices of each edge.
Original entry on oeis.org
1, 2, 6, 38, 666, 32282, 3965886, 1165884638, 792920124786, 1220537093266802, 4187268805038970806, 31649452354183112810198, 522319168680465054600480906, 18683388426164284818805590810122, 1439689660962836496648920949576152046, 237746858936806624825195458794266076911118
Offset: 0
The set-system Y = {{1},{1,2},{2,3}} has choices (1,1,2), (1,1,3), (1,2,2), (1,2,3), of which only (1,2,3) has all different elements, so Y is counted under a(3).
The a(0) = 1 through a(2) = 6 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
The maximal case (n subsets) is
A003024.
The version for at least one choice is
A367902.
A059201 counts covering T_0 set-systems.
-
Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,3}]
A367769
Number of finite sets of nonempty non-singleton subsets of {1..n} contradicting a strict version of the axiom of choice.
Original entry on oeis.org
0, 0, 0, 1, 1490, 67027582, 144115188036455750, 1329227995784915872903806998967001298, 226156424291633194186662080095093570025917938800079226639565284090686126876
Offset: 0
The a(3) = 1 set-system is: {{1,2},{1,3},{2,3},{1,2,3}}.
Set-systems without singletons are counted by
A016031, covering
A323816.
The version allowing singletons and empty edges is
A367901.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
Cf.
A007716,
A092918,
A102896,
A283877,
A306445,
A326031,
A355739,
A355740,
A355741,
A367904,
A367905.
-
Table[Length[Select[Subsets[Select[Subsets[Range[n]], Length[#]>1&]], Select[Tuples[#], UnsameQ@@#&]=={}&]], {n,0,3}]
A368600
Number of ways to choose a set of n nonempty subsets of {1..n} such that it is not possible to choose a different element from each.
Original entry on oeis.org
0, 0, 0, 3, 164, 18625, 5491851, 4649088885, 12219849683346
Offset: 0
The a(3) = 3 set-systems:
{{1},{2},{1,2}}
{{1},{3},{1,3}}
{{2},{3},{2,3}}
Sets of n nonempty subsets of {1..n} are counted by
A136556.
A059201 counts covering T_0 set-systems.
Cf.
A003025,
A088957,
A133686,
A334282,
A355529,
A355740,
A367862,
A367867,
A367868,
A367901,
A368094,
A368097.
-
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,3}]
-
from itertools import combinations, product, chain
from scipy.special import comb
def v(c):
for elements in product(*c):
if len(set(elements)) == len(elements):
return True
return False
def a(n):
if n == 0:
return 1
subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in range(1, n + 1)))
cs = combinations(subsets, n)
c = sum(1 for c in cs if v(c))
return c
[print(int(comb(2**n-1,n) - a(n))) for n in range(7)] # Robert P. P. McKone, Jan 02 2024
A368601
Number of ways to choose a set of n nonempty subsets of {1..n} such that it is possible to choose a different element from each.
Original entry on oeis.org
1, 1, 3, 32, 1201, 151286, 62453670, 84707326890, 384641855115279
Offset: 0
The a(2) = 3 set-systems:
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
Non-isomorphic representatives of the a(3) = 32 set-systems:
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
Sets of n nonempty subsets of {1..n} are counted by
A136556.
A059201 counts covering T_0 set-systems.
Cf.
A003025,
A088957,
A133686,
A334282,
A355529,
A355740,
A367862,
A367867,
A367901,
A367905,
A368094,
A368097.
-
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]>0&]],{n,0,3}]
-
from itertools import combinations, product, chain
def v(c):
for elements in product(*c):
if len(set(elements)) == len(elements):
return True
return False
def a(n):
if n == 0:
return 1
subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in
range(1, n + 1)))
cs = combinations(subsets, n)
c = sum(1 for c in cs if v(c))
return c
[print(a(n)) for n in range(7)] # Robert P. P. McKone, Jan 02 2024
A367916
Number of sets of nonempty subsets of {1..n} with the same number of edges as covered vertices.
Original entry on oeis.org
1, 2, 6, 45, 1376, 161587, 64552473, 85987037645, 386933032425826, 6005080379837219319, 328011924848834642962619, 64153024576968812343635391868, 45547297603829979923254392040011994, 118654043008142499115765307533395739785599
Offset: 0
The a(0) = 1 through a(2) = 6 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
These set-systems have ranks
A367917.
A059201 counts covering T_0 set-systems.
A136556 counts set-systems on {1..n} with n edges.
Cf.
A092918,
A102896,
A133686,
A306445,
A323818,
A355740,
A367770,
A367869,
A367901,
A367902,
A367905.
-
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Length[Union@@#]==Length[#]&]],{n,0,3}]
-
\\ Here b(n) is A054780(n).
b(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(2^k-1, n))
a(n) = sum(k=0, n, binomial(n,k) * b(k)) \\ Andrew Howroyd, Dec 29 2023
A367772
Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice in more than one way.
Original entry on oeis.org
0, 0, 1, 23, 1105, 154941, 66072394, 88945612865, 396990456067403
Offset: 0
Non-isomorphic representatives of the a(3) = 23 set-systems:
{{1,2}}
{{1,2,3}}
{{1},{2,3}}
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1,2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
For at least one choice we have
A367902.
These set-systems have ranks
A367909.
Cf.
A059201,
A102896,
A133686,
A283877,
A306445,
A323818,
A355741,
A367770,
A367862,
A367869,
A367901,
A367905.
-
Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#], UnsameQ@@#&]]>1&]], {n,0,3}]
A367917
BII-numbers of set-systems with the same number of edges as covered vertices.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152
Offset: 1
The terms together with the corresponding set-systems begin:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
17: {{1},{1,3}}
19: {{1},{2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
24: {{3},{1,3}}
26: {{2},{3},{1,3}}
28: {{1,2},{3},{1,3}}
34: {{2},{2,3}}
35: {{1},{2},{2,3}}
37: {{1},{1,2},{2,3}}
A070939 gives length of binary expansion.
A136556 counts set-systems on {1..n} with n edges.
Cf.
A057500,
A059201,
A072639,
A096111,
A116508,
A309326,
A326031,
A326702,
A326753,
A326754,
A367770,
A367902,
A367905.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
Select[Range[0,100], Length[bpe[#]]==Length[Union@@bpe/@bpe[#]]&]
A370639
Number of subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.
Original entry on oeis.org
0, 1, 2, 3, 7, 10, 15, 22, 61, 81, 112, 154, 207, 276, 355, 464, 1771, 2166, 2724, 3445, 4246, 5292, 6420, 7922, 9586, 11667, 13768, 16606, 19095, 22825, 26498, 31421, 187223, 213684, 247670, 289181, 331301, 385079, 440411, 510124, 575266, 662625, 747521
Offset: 0
The a(0) = 0 through a(6) = 15 subsets:
. {1} {2} {3} {4} {5} {6}
{1,2} {1,3} {1,4} {1,5} {1,6}
{2,3} {2,4} {2,5} {2,6}
{3,4} {3,5} {3,6}
{1,2,4} {4,5} {4,6}
{1,3,4} {1,2,5} {5,6}
{2,3,4} {1,3,5} {1,2,6}
{2,3,5} {1,3,6}
{2,4,5} {1,4,6}
{3,4,5} {1,5,6}
{2,3,6}
{2,5,6}
{3,4,6}
{3,5,6}
{4,5,6}
Unlabeled graphs of this type are counted by
A134964, complement
A140637.
Simple graphs not of this type are counted by
A367867, covering
A367868.
Set systems uniquely of this type are counted by
A367904, ranks
A367908.
Unlabeled multiset partitions of this type are
A368098, complement
A368097.
For prime instead of binary indices we have
A370586, differences of
A370582.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
Cf.
A000612,
A326702,
A355739,
A355740,
A367770,
A367772,
A367905,
A367909,
A367912,
A368094,
A368095,
A368109,
A370640.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]
Comments