cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 72 results. Next

A368410 Number of non-isomorphic connected set-systems of weight n satisfying a strict version of the axiom of choice.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 15, 32, 80, 198, 528
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 15 set-systems:
  {1}  {12}  {123}    {1234}    {12345}      {123456}
             {2}{12}  {13}{23}  {14}{234}    {125}{345}
                      {3}{123}  {23}{123}    {134}{234}
                                {4}{1234}    {15}{2345}
                                {2}{13}{23}  {34}{1234}
                                {2}{3}{123}  {5}{12345}
                                {3}{13}{23}  {1}{14}{234}
                                             {12}{13}{23}
                                             {1}{23}{123}
                                             {13}{24}{34}
                                             {14}{24}{34}
                                             {3}{14}{234}
                                             {3}{23}{123}
                                             {3}{4}{1234}
                                             {4}{14}{234}
		

Crossrefs

For unlabeled graphs we have A005703, connected case of A134964.
For labeled graphs we have A129271, connected case of A133686.
The complement for labeled graphs is A140638, connected case of A367867.
The complement without connectedness is A367903, ranks A367907.
Without connectedness we have A368095, ranks A367906,
Complement with repeats: A368097, connected case of A368411, ranks A355529.
The complement is counted by A368409, connected case of A368094.
With repeats allowed: A368412, connected case of A368098, ranks A368100.
A000110 counts set-partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]}, {i,Length[p]}])],{p,Permutations[Union@@m]}]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]!={}&]]],{n,0,6}]

A368421 Number of non-isomorphic set multipartitions of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 2, 7, 16, 47, 116, 325, 861
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set multipartition is a finite multiset of finite nonempty sets. The weight of a set multipartition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any sequence of nonempty sets Y, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 16 set multipartitions:
  {{1},{1}}  {{1},{1},{1}}  {{1},{1},{2,3}}    {{1},{1},{2,3,4}}
             {{1},{2},{2}}  {{1},{2},{1,2}}    {{2},{1,2},{1,2}}
                            {{2},{2},{1,2}}    {{3},{3},{1,2,3}}
                            {{1},{1},{1},{1}}  {{1},{1},{1},{2,3}}
                            {{1},{1},{2},{2}}  {{1},{1},{3},{2,3}}
                            {{1},{2},{2},{2}}  {{1},{2},{2},{1,2}}
                            {{1},{2},{3},{3}}  {{1},{2},{2},{3,4}}
                                               {{1},{2},{3},{2,3}}
                                               {{1},{3},{3},{2,3}}
                                               {{2},{2},{2},{1,2}}
                                               {{1},{1},{1},{1},{1}}
                                               {{1},{1},{2},{2},{2}}
                                               {{1},{2},{2},{2},{2}}
                                               {{1},{2},{2},{3},{3}}
                                               {{1},{2},{3},{3},{3}}
                                               {{1},{2},{3},{4},{4}}
		

Crossrefs

The case of unlabeled graphs is A140637, complement A134964.
Set multipartitions have ranks A302478, cf. A073576.
The case of labeled graphs is A367867, complement A133686.
With distinct edges we have A368094 connected A368409.
The complement with distinct edges is A368095, connected A368410.
Allowing repeated elements gives A368097, ranks A355529.
The complement allowing repeats is A368098, ranks A368100.
Factorizations of this type are counted by A368413, complement A368414.
The complement is counted by A368422.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]

A370642 Number of minimal subsets of {1..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 9, 26, 26, 40, 82, 175, 338, 636, 1114
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(6) = 9 subsets:
  .  .  .  {1,2,3}  {1,2,3}  {1,2,3}    {1,2,3}
                             {1,4,5}    {1,4,5}
                             {2,3,4,5}  {2,4,6}
                                        {1,2,5,6}
                                        {1,3,4,6}
                                        {1,3,5,6}
                                        {2,3,4,5}
                                        {2,3,5,6}
                                        {3,4,5,6}
		

Crossrefs

For prime indices we have A370591, minima of A370583, complement A370582.
This is the minimal case of A370637, complement A370636.
The version for a unique choice is A370638, maxima A370640, diffs A370641.
The case without ones is A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368100 ranks choosable multisets, complement A355529.
A370585 counts maximal choosable sets.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
    Table[Length[fasmin[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]]],{n,0,10}]

A368186 Number of n-covers of an unlabeled n-set.

Original entry on oeis.org

1, 1, 2, 9, 87, 1973, 118827, 20576251, 10810818595, 17821875542809, 94589477627232498, 1651805220868992729874, 96651473179540769701281003, 19238331716776641088273777321428, 13192673305726630096303157068241728202, 31503323006770789288222386469635474844616195
Offset: 0

Views

Author

Gus Wiseman, Dec 19 2023

Keywords

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 set-systems:
  {{1}}  {{1},{2}}    {{1},{2},{3}}
         {{1},{1,2}}  {{1},{2},{1,3}}
                      {{1},{1,2},{1,3}}
                      {{1},{1,2},{2,3}}
                      {{1},{2},{1,2,3}}
                      {{1},{1,2},{1,2,3}}
                      {{1,2},{1,3},{2,3}}
                      {{1},{2,3},{1,2,3}}
                      {{1,2},{1,3},{1,2,3}}
		

Crossrefs

The labeled version is A054780, ranks A367917, non-covering A367916.
The case of graphs is A006649, labeled A367863, cf. A116508, A367862.
The case of connected graphs is A001429, labeled A057500.
Covers with any number of edges are counted by A003465, unlabeled A055621.
A046165 counts minimal covers, ranks A309326.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.

Programs

  • Mathematica
    brute[m_]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i, p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}];
    Table[Length[Union[First[Sort[brute[#]]]& /@ Select[Subsets[Rest[Subsets[Range[n]]],{n}], Union@@#==Range[n]&]]], {n,0,3}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t)={2^sum(j=1, #q, gcd(t, q[j])) - 1}
    G(n,m)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, m, K(q,t)*x^t/t, O(x*x^m))); s+=permcount(q)*exp(g - subst(g,x,x^2))); s/n!)}
    a(n)=if(n ==0, 1, polcoef(G(n,n) - G(n-1,n), n)) \\ Andrew Howroyd, Jan 03 2024

Formula

a(n) = A055130(n, n) for n > 0. - Andrew Howroyd, Jan 03 2024

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jan 03 2024

A369144 Number of labeled simple graphs with n edges covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 90, 4935, 200970, 7636860, 291089610, 11459170800, 471932476290, 20447369179380, 933942958593645, 44981469288560805, 2282792616992648670, 121924195590795244920, 6843305987751060036720, 403003907531795513467260, 24861219342100679072572470
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2024

Keywords

Examples

			The term a(6) = 90 counts all permutations of the (non-connected) graph {{1,2},{1,3},{1,4},{2,3},{2,4},{5,6}}.
		

Crossrefs

The covering complement is counted by A137916.
Without the choice condition we have A367863, covering case of A116508.
Allowing any number of edges gives A367868, covering case of A367867.
With loops we have A368730, covering case of A368596, unlabeled A368835.
This is the covering case of A369143.
A003465 counts covering set-systems, unlabeled A055621.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A058891 counts set-systems, unlabeled A000612.
A322661 counts covering loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,6}]

Formula

a(n) = A367863(n) - A137916(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 02 2024

A370641 Number of maximal subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 9, 15, 32, 45, 67, 98, 141, 197, 263, 358, 1201, 1493, 1920, 2482, 3123, 3967, 4884, 6137, 7584, 9369, 11169, 13664, 15818, 19152, 22418, 26905, 151286, 173409, 202171, 237572, 273651, 320040, 367792, 428747, 485697, 562620, 637043, 734738, 815492
Offset: 0

Views

Author

Gus Wiseman, Mar 11 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Also choices of A070939(n) elements of {1..n} containing n such that it is possible to choose a different binary index of each.

Examples

			The a(0) = 0 through a(7) = 15 subsets:
  .  {1}  {1,2}  {1,3}  {1,2,4}  {1,2,5}  {1,2,6}  {1,2,7}
                 {2,3}  {1,3,4}  {1,3,5}  {1,3,6}  {1,3,7}
                        {2,3,4}  {2,3,5}  {1,4,6}  {1,4,7}
                                 {2,4,5}  {1,5,6}  {1,5,7}
                                 {3,4,5}  {2,3,6}  {1,6,7}
                                          {2,5,6}  {2,3,7}
                                          {3,4,6}  {2,4,7}
                                          {3,5,6}  {2,5,7}
                                          {4,5,6}  {2,6,7}
                                                   {3,4,7}
                                                   {3,5,7}
                                                   {3,6,7}
                                                   {4,5,7}
                                                   {4,6,7}
                                                   {5,6,7}
		

Crossrefs

A version for set-systems is A368601.
For prime indices we have A370590, without n A370585, see also A370591.
This is the maximal case of A370636 requiring n, complement A370637.
This is the maximal case of A370639, complement A370589.
Without requiring n we have A370640.
Dominated by A370819.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}],MemberQ[#,n] && Length[Union[Sort/@Select[Tuples[bpe/@#], UnsameQ@@#&]]]>0&]],{n,0,25}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A368411 Number of non-isomorphic connected multiset partitions of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 2, 6, 15, 50, 148, 509, 1725, 6218
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 15 multiset partitions:
  {{1},{1}}  {{1},{1,1}}    {{1},{1,1,1}}      {{1},{1,1,1,1}}
             {{1},{1},{1}}  {{1,1},{1,1}}      {{1,1},{1,1,1}}
                            {{1},{1},{1,1}}    {{1},{1},{1,1,1}}
                            {{1},{2},{1,2}}    {{1},{1,1},{1,1}}
                            {{2},{2},{1,2}}    {{1},{1},{1,2,2}}
                            {{1},{1},{1},{1}}  {{1},{1,2},{2,2}}
                                               {{1},{2},{1,2,2}}
                                               {{2},{1,2},{1,2}}
                                               {{2},{1,2},{2,2}}
                                               {{2},{2},{1,2,2}}
                                               {{3},{3},{1,2,3}}
                                               {{1},{1},{1},{1,1}}
                                               {{1},{2},{2},{1,2}}
                                               {{2},{2},{2},{1,2}}
                                               {{1},{1},{1},{1},{1}}
		

Crossrefs

The case of labeled graphs is A140638, connected case of A367867.
The complement for labeled graphs is A129271, connected case of A133686.
This is the connected case of A368097.
For set-systems we have A368409, connected case of A368094, ranks A367907.
Complement set-systems: A368410, connected case of A368095, ranks A367906.
The complement is A368412, connected case of A368098, ranks A368100.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List /@ c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[brute /@ Select[mpm[n],Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]

A370591 Number of minimal subsets of {1..n} such that it is not possible to choose a different prime factor of each element (non-choosable).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 4, 4, 7, 11, 16, 16, 30, 30, 39, 73
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Examples

			The a(1) = 1 through a(10) = 16 subsets:
{1}  {1}  {1}  {1}    {1}    {1}      {1}      {1}      {1}      {1}
               {2,4}  {2,4}  {2,4}    {2,4}    {2,4}    {2,4}    {2,4}
                             {2,3,6}  {2,3,6}  {2,8}    {2,8}    {2,8}
                             {3,4,6}  {3,4,6}  {4,8}    {3,9}    {3,9}
                                               {2,3,6}  {4,8}    {4,8}
                                               {3,4,6}  {2,3,6}  {2,3,6}
                                               {3,6,8}  {2,6,9}  {2,6,9}
                                                        {3,4,6}  {3,4,6}
                                                        {3,6,8}  {3,6,8}
                                                        {4,6,9}  {4,6,9}
                                                        {6,8,9}  {6,8,9}
                                                                 {2,5,10}
                                                                 {4,5,10}
                                                                 {5,8,10}
                                                                 {3,5,6,10}
                                                                 {5,6,9,10}
		

Crossrefs

Minimal case of A370583, complement A370582.
For binary indices instead of factors we have A370642, minima of A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[fasmin[Select[Subsets[Range[n]], Length[Select[Tuples[prix/@#],UnsameQ@@#&]]==0&]]], {n,0,15}]

A370644 Number of minimal subsets of {2..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 4, 13, 13, 26, 56, 126, 243, 471, 812, 1438
Offset: 0

Views

Author

Gus Wiseman, Mar 11 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(7) = 13 subsets:
  .  .  .  .  .  {2,3,4,5}  {2,4,6}    {2,4,6}
                            {2,3,4,5}  {2,3,4,5}
                            {2,3,5,6}  {2,3,4,7}
                            {3,4,5,6}  {2,3,5,6}
                                       {2,3,5,7}
                                       {2,3,6,7}
                                       {2,4,5,7}
                                       {2,5,6,7}
                                       {3,4,5,6}
                                       {3,4,5,7}
                                       {3,4,6,7}
                                       {3,5,6,7}
                                       {4,5,6,7}
The a(0) = 0 through a(7) = 13 set-systems:
  .  .  .  .  .  {2}{12}{3}{13}  {2}{3}{23}       {2}{3}{23}
                                 {2}{12}{3}{13}   {2}{12}{3}{13}
                                 {12}{3}{13}{23}  {12}{3}{13}{23}
                                 {2}{12}{13}{23}  {2}{12}{13}{23}
                                                  {2}{12}{3}{123}
                                                  {2}{3}{13}{123}
                                                  {12}{3}{13}{123}
                                                  {12}{3}{23}{123}
                                                  {2}{12}{13}{123}
                                                  {2}{12}{23}{123}
                                                  {2}{13}{23}{123}
                                                  {3}{13}{23}{123}
                                                  {12}{13}{23}{123}
		

Crossrefs

The version with ones allowed is A370642, minimal case of A370637.
This is the minimal case of A370643.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A370585 counts maximal choosable sets.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
    Table[Length[fasmin[Select[Subsets[Range[2,n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]]],{n,0,10}]

A387118 Number of integer partitions of n without choosable initial intervals.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 8, 13, 19, 28, 37, 52, 70, 97, 130, 172, 224, 293, 378, 492, 630, 806, 1018, 1286, 1609, 2019, 2514, 3131, 3874, 4784, 5872, 7198, 8786, 10712, 13013, 15794, 19100, 23063, 27752, 33341, 39939, 47781, 57013, 67955, 80816, 95992, 113773, 134668
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.

Examples

			The partition y = (2,2,1) has initial intervals ({1,2},{1,2},{1}), which are not choosable, so y is counted under a(5).
The a(2) = 1 through a(8) = 13 partitions:
  (11)  (111)  (211)   (221)    (222)     (511)      (611)
               (1111)  (311)    (411)     (2221)     (2222)
                       (2111)   (2211)    (3211)     (3221)
                       (11111)  (3111)    (4111)     (3311)
                                (21111)   (22111)    (4211)
                                (111111)  (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

The complement is counted by A238873, ranks A387112.
The complement for divisors is A239312, ranks A368110.
For divisors instead of initial intervals we have A370320, ranks A355740.
The complement for prime factors is A370592, ranks A368100.
For prime factors instead of initial intervals we have A370593, ranks A355529.
These partitions have ranks A387113.
For partitions instead of initial intervals we have A387134.
The complement for partitions is A387328.
For strict partitions instead of initial intervals we have A387137, ranks A387176.
The complement for strict partitions is A387178.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[Range/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Sep 05 2025
Previous Showing 51-60 of 72 results. Next