cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A370583 Number of subsets of {1..n} such that it is not possible to choose a different prime factor of each element.

Original entry on oeis.org

0, 1, 2, 4, 10, 20, 44, 88, 204, 440, 908, 1816, 3776, 7552, 15364, 31240, 63744, 127488, 257592, 515184, 1036336, 2079312, 4166408, 8332816, 16709632, 33470464, 66978208, 134067488, 268236928, 536473856, 1073233840, 2146467680, 4293851680, 8588355424, 17177430640
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Examples

			The a(0) = 0 through a(5) = 20 subsets:
  .  {1}  {1}    {1}      {1}        {1}
          {1,2}  {1,2}    {1,2}      {1,2}
                 {1,3}    {1,3}      {1,3}
                 {1,2,3}  {1,4}      {1,4}
                          {2,4}      {1,5}
                          {1,2,3}    {2,4}
                          {1,2,4}    {1,2,3}
                          {1,3,4}    {1,2,4}
                          {2,3,4}    {1,2,5}
                          {1,2,3,4}  {1,3,4}
                                     {1,3,5}
                                     {1,4,5}
                                     {2,3,4}
                                     {2,4,5}
                                     {1,2,3,4}
                                     {1,2,3,5}
                                     {1,2,4,5}
                                     {1,3,4,5}
                                     {2,3,4,5}
                                     {1,2,3,4,5}
		

Crossrefs

Multisets of this type are ranked by A355529, complement A368100.
For divisors instead of factors we have A355740, complement A368110.
The complement for set-systems is A367902, ranks A367906, unlabeled A368095.
The version for set-systems is A367903, ranks A367907, unlabeled A368094.
For non-isomorphic multiset partitions we have A368097, complement A368098.
The version for factorizations is A368413, complement A368414.
The complement is counted by A370582.
For a unique choice we have A370584.
Partial sums of A370587, complement A370586.
The minimal case is A370591.
The version for partitions is A370593, complement A370592.
For binary indices instead of factors we have A370637, complement A370636.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]

Formula

a(n) = 2^n - A370582(n).

Extensions

a(19)-a(34) from Alois P. Heinz, Feb 27 2024

A370582 Number of subsets of {1..n} such that it is possible to choose a different prime factor of each element.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 20, 40, 52, 72, 116, 232, 320, 640, 1020, 1528, 1792, 3584, 4552, 9104, 12240, 17840, 27896, 55792, 67584, 83968, 130656, 150240, 198528, 397056, 507984, 1015968, 1115616, 1579168, 2438544, 3259680, 3730368, 7460736, 11494656, 16145952, 19078464, 38156928
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2024

Keywords

Examples

			The a(0) = 1 through a(6) = 20 subsets:
  {}  {}  {}   {}     {}     {}       {}
          {2}  {2}    {2}    {2}      {2}
               {3}    {3}    {3}      {3}
               {2,3}  {4}    {4}      {4}
                      {2,3}  {5}      {5}
                      {3,4}  {2,3}    {6}
                             {2,5}    {2,3}
                             {3,4}    {2,5}
                             {3,5}    {2,6}
                             {4,5}    {3,4}
                             {2,3,5}  {3,5}
                             {3,4,5}  {3,6}
                                      {4,5}
                                      {4,6}
                                      {5,6}
                                      {2,3,5}
                                      {2,5,6}
                                      {3,4,5}
                                      {3,5,6}
                                      {4,5,6}
		

Crossrefs

The version for set-systems is A367902, ranks A367906, unlabeled A368095.
The complement for set-systems is A367903, ranks A367907, unlabeled A368094.
For unlabeled multiset partitions we have A368098, complement A368097.
Multisets of this type are ranked by A368100, complement A355529.
For divisors instead of factors we have A368110, complement A355740.
The version for factorizations is A368414, complement A368413.
The complement is counted by A370583.
For a unique choice we have A370584.
The maximal case is A370585.
Partial sums of A370586, complement A370587.
The version for partitions is A370592, complement A370593.
For binary indices instead of factors we have A370636, complement A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]>0&]],{n,0,10}]

Formula

a(p) = 2 * a(p-1) for prime p. - David A. Corneth, Feb 25 2024
a(n) = 2^n - A370583(n).

Extensions

a(19) from David A. Corneth, Feb 25 2024
a(20)-a(41) from Alois P. Heinz, Feb 25 2024

A370637 Number of subsets of {1..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 25, 67, 134, 309, 709, 1579, 3420, 7240, 15077, 30997, 61994, 125364, 253712, 512411, 1032453, 2075737, 4166469, 8352851, 16731873, 33497422, 67038086, 134130344, 268328977, 536741608, 1073586022, 2147296425, 4294592850, 8589346462, 17179033384
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(5) = 8 subsets:
  .  .  .  {1,2,3}  {1,2,3}    {1,2,3}
                    {1,2,3,4}  {1,4,5}
                               {1,2,3,4}
                               {1,2,3,5}
                               {1,2,4,5}
                               {1,3,4,5}
                               {2,3,4,5}
                               {1,2,3,4,5}
		

Crossrefs

Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Simple graphs of this type are counted by A367867, covering A367868.
Set systems not of this type are counted by A367902, ranks A367906.
Set systems of this type are counted by A367903, ranks A367907.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A version for MM-numbers of multisets is A355529, complement A368100.
Factorizations are counted by A368413/A370813, complement A368414/A370814.
The complement for prime indices is A370582, differences A370586.
For prime indices we have A370583, differences A370587.
First differences are A370589.
The complement is counted by A370636, differences A370639.
The case without ones is A370643.
The version for a unique choice is A370638, maxima A370640, diffs A370641.
The minimal case is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Formula

a(2^n - 1) = A367903(n).
Partial sums of A370589.

Extensions

a(21)-a(34) from Alois P. Heinz, Mar 09 2024

A370586 Number of subsets of {1..n} containing n such that it is possible to choose a different prime factor of each element (choosable).

Original entry on oeis.org

0, 0, 1, 2, 2, 6, 8, 20, 12, 20, 44, 116, 88, 320, 380, 508, 264, 1792, 968, 4552, 3136, 5600, 10056, 27896, 11792, 16384, 46688, 19584, 48288, 198528, 110928, 507984, 99648, 463552, 859376, 821136, 470688, 3730368, 4033920, 4651296, 2932512, 19078464
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Examples

			The a(0) = 0 through a(7) = 20 subsets:
  .  .  {2}  {3}    {4}    {5}      {6}      {7}
             {2,3}  {3,4}  {2,5}    {2,6}    {2,7}
                           {3,5}    {3,6}    {3,7}
                           {4,5}    {4,6}    {4,7}
                           {2,3,5}  {5,6}    {5,7}
                           {3,4,5}  {2,5,6}  {6,7}
                                    {3,5,6}  {2,3,7}
                                    {4,5,6}  {2,5,7}
                                             {2,6,7}
                                             {3,4,7}
                                             {3,5,7}
                                             {3,6,7}
                                             {4,5,7}
                                             {4,6,7}
                                             {5,6,7}
                                             {2,3,5,7}
                                             {2,5,6,7}
                                             {3,4,5,7}
                                             {3,5,6,7}
                                             {4,5,6,7}
		

Crossrefs

First differences of A370582, complement A370583, cf. A370584.
Maximal choosable sets are counted by A370585.
The complement is counted by A370587.
For a unique choice we have A370588.
For binary indices instead of prime factors we have A370639.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,10}]

Extensions

a(19)-a(41) from Alois P. Heinz, Feb 27 2024

A368600 Number of ways to choose a set of n nonempty subsets of {1..n} such that it is not possible to choose a different element from each.

Original entry on oeis.org

0, 0, 0, 3, 164, 18625, 5491851, 4649088885, 12219849683346
Offset: 0

Views

Author

Gus Wiseman, Jan 01 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(3) = 3 set-systems:
  {{1},{2},{1,2}}
  {{1},{3},{1,3}}
  {{2},{3},{2,3}}
		

Crossrefs

For a unique choice we have A003024, any length A367904 (ranks A367908).
Sets of n nonempty subsets of {1..n} are counted by A136556.
For any length we have A367903, ranks A367907, no singletons A367769.
The complement is A368601, any length A367902 (see also A367770, A367906).
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,3}]
  • Python
    from itertools import combinations, product, chain
    from scipy.special import comb
    def v(c):
        for elements in product(*c):
            if len(set(elements)) == len(elements):
                return True
        return False
    def a(n):
        if n == 0:
            return 1
        subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in range(1, n + 1)))
        cs = combinations(subsets, n)
        c = sum(1 for c in cs if v(c))
        return c
    [print(int(comb(2**n-1,n) - a(n))) for n in range(7)] # Robert P. P. McKone, Jan 02 2024

Formula

a(n) = A136556(n) - A368601(n).

Extensions

a(6) from Robert P. P. McKone, Jan 02 2024
a(7)-a(8) from Christian Sievers, Jul 25 2024

A368601 Number of ways to choose a set of n nonempty subsets of {1..n} such that it is possible to choose a different element from each.

Original entry on oeis.org

1, 1, 3, 32, 1201, 151286, 62453670, 84707326890, 384641855115279
Offset: 0

Views

Author

Gus Wiseman, Jan 01 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(2) = 3 set-systems:
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
Non-isomorphic representatives of the a(3) = 32 set-systems:
  {{1},{2},{3}}
  {{1},{2},{1,3}}
  {{1},{2},{1,2,3}}
  {{1},{1,2},{1,3}}
  {{1},{1,2},{2,3}}
  {{1},{1,2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
		

Crossrefs

For a unique choice we have A003024, any length A367904 (ranks A367908).
Sets of n nonempty subsets of {1..n} are counted by A136556.
For any length we have A367902, ranks A367906, no singletons A367770.
The complement is A368600, any length A367903 (see also A367907, A367769).
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]>0&]],{n,0,3}]
  • Python
    from itertools import combinations, product, chain
    def v(c):
        for elements in product(*c):
            if len(set(elements)) == len(elements):
                return True
        return False
    def a(n):
        if n == 0:
            return 1
        subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in
    range(1, n + 1)))
        cs = combinations(subsets, n)
        c = sum(1 for c in cs if v(c))
        return c
    [print(a(n)) for n in range(7)] # Robert P. P. McKone, Jan 02 2024

Formula

a(n) + A368600(n) = A136556(n).

Extensions

a(6) from Robert P. P. McKone, Jan 02 2024
a(7)-a(8) from Christian Sievers, Jul 25 2024

A370587 Number of subsets of {1..n} containing n such that it is not possible to choose a different prime factor of each element (non-choosable).

Original entry on oeis.org

0, 1, 1, 2, 6, 10, 24, 44, 116, 236, 468, 908, 1960, 3776, 7812, 15876, 32504, 63744, 130104, 257592, 521152, 1042976, 2087096, 4166408, 8376816, 16760832, 33507744, 67089280, 134169440, 268236928, 536759984, 1073233840, 2147384000, 4294503744, 8589075216, 17179048048
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Examples

			The a(0) = 0 through a(5) = 10 subsets:
  .  {1}  {1,2}  {1,3}    {1,4}      {1,5}
                 {1,2,3}  {2,4}      {1,2,5}
                          {1,2,4}    {1,3,5}
                          {1,3,4}    {1,4,5}
                          {2,3,4}    {2,4,5}
                          {1,2,3,4}  {1,2,3,5}
                                     {1,2,4,5}
                                     {1,3,4,5}
                                     {2,3,4,5}
                                     {1,2,3,4,5}
		

Crossrefs

First differences of A370583, complement A370582, cf. A370584.
The complement is counted by A370586.
For a unique choice we have A370588.
For binary indices instead of factors we have A370639, complement A370589.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A368409 Number of non-isomorphic connected set-systems of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 5, 16, 41, 130
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(4) = 1 through a(8) = 16 set-systems:
  {1}{2}{12}  .  {1}{2}{13}{23}  {1}{3}{23}{123}    {1}{5}{15}{2345}
                 {1}{2}{3}{123}  {1}{4}{14}{234}    {2}{13}{23}{123}
                 {2}{3}{13}{23}  {2}{3}{23}{123}    {3}{13}{23}{123}
                                 {3}{12}{13}{23}    {3}{4}{34}{1234}
                                 {1}{2}{3}{13}{23}  {1}{2}{13}{24}{34}
                                                    {1}{2}{3}{14}{234}
                                                    {1}{2}{3}{23}{123}
                                                    {1}{2}{3}{4}{1234}
                                                    {1}{3}{4}{14}{234}
                                                    {2}{3}{12}{13}{23}
                                                    {2}{3}{13}{24}{34}
                                                    {2}{3}{14}{24}{34}
                                                    {2}{3}{4}{14}{234}
                                                    {2}{4}{13}{24}{34}
                                                    {3}{4}{13}{24}{34}
                                                    {3}{4}{14}{24}{34}
		

Crossrefs

For unlabeled graphs we have A140636, connected case of A140637.
For labeled graphs: A140638, connected case of A367867 (complement A133686).
This is the connected case of A368094.
The complement is A368410, connected case of A368095.
Allowing repeats: A368411, connected case of A368097, ranks A355529.
Complement with repeats: A368412, connected case of A368098, ranks A368100.
Allowing repeat edges only: connected case of A368421 (complement A368422).
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}}; sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2, {#1}]&,#]]&/@IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]}, {i,Length[p]}])],{p,Permutations[Union@@m]}]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]

A368187 Divisor-minimal numbers whose prime indices of prime indices contradict a strict version of the axiom of choice.

Original entry on oeis.org

2, 9, 21, 25, 49, 57, 115, 121, 133, 159, 195, 289, 361, 371, 393, 455, 507, 515, 529, 555, 845, 897, 915, 917, 933, 957, 961, 1007, 1067, 1183, 1235, 1295, 1335, 1443, 1681, 2093, 2095, 2135, 2157, 2177, 2193, 2197, 2233, 2265, 2343, 2369, 2379, 2405, 2489
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The terms together with their prime indices begin:
     2: {1}
     9: {2,2}
    21: {2,4}
    25: {3,3}
    49: {4,4}
    57: {2,8}
   115: {3,9}
   121: {5,5}
   133: {4,8}
   159: {2,16}
   195: {2,3,6}
   289: {7,7}
   361: {8,8}
   371: {4,16}
   393: {2,32}
   455: {3,4,6}
		

Crossrefs

The version for BII-numbers of set-systems is A368532.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    vmin[y_]:=Select[y,Function[s, Select[DeleteCases[y,s], Divisible[s,#]&]=={}]];
    Select[Range[100],Select[Tuples[prix /@ prix[#]],UnsameQ@@#&]=={}&]//vmin

A370639 Number of subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

0, 1, 2, 3, 7, 10, 15, 22, 61, 81, 112, 154, 207, 276, 355, 464, 1771, 2166, 2724, 3445, 4246, 5292, 6420, 7922, 9586, 11667, 13768, 16606, 19095, 22825, 26498, 31421, 187223, 213684, 247670, 289181, 331301, 385079, 440411, 510124, 575266, 662625, 747521
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(6) = 15 subsets:
  .  {1}  {2}    {3}    {4}      {5}      {6}
          {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
                 {2,3}  {2,4}    {2,5}    {2,6}
                        {3,4}    {3,5}    {3,6}
                        {1,2,4}  {4,5}    {4,6}
                        {1,3,4}  {1,2,5}  {5,6}
                        {2,3,4}  {1,3,5}  {1,2,6}
                                 {2,3,5}  {1,3,6}
                                 {2,4,5}  {1,4,6}
                                 {3,4,5}  {1,5,6}
                                          {2,3,6}
                                          {2,5,6}
                                          {3,4,6}
                                          {3,5,6}
                                          {4,5,6}
		

Crossrefs

Simple graphs of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems of this type are counted by A367902, ranks A367906.
Set systems not of this type are counted by A367903, ranks A367907.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
Factorizations of this type are A368414/A370814, complement A368413/A370813.
For prime instead of binary indices we have A370586, differences of A370582.
The complement for prime indices is A370587, differences of A370583.
The complement is counted by A370589, differences of A370637.
Partial sums are A370636.
The complement has partial sums A370637/A370643, minima A370642/A370644.
The case of a unique choice is A370641, differences of A370638.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]

Formula

First differences of A370636.

Extensions

a(19)-a(42) from Alois P. Heinz, Mar 09 2024
Previous Showing 11-20 of 35 results. Next