cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A377286 Numbers k such that there are no prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Examples

			Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains the prime-power 64, so 18 is not in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933(n) elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
These are the positions of 0 in A080101, or 1 in A366833.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
For at least one prime-power we have A377057.
For one instead of no prime-powers we have A377287.
For two instead of no prime-powers we have A377288.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==0&]
  • Python
    from itertools import count, islice
    from sympy import factorint, nextprime
    def A377286_gen(): # generator of terms
        p, q, k = 2, 3, 1
        for k in count(1):
            if all(len(factorint(i))>1 for i in range(p+1,q)):
                yield k
            p, q = q, nextprime(q)
    A377286_list = list(islice(A377286_gen(),66)) # Chai Wah Wu, Oct 27 2024

A377431 Numbers k such that there is at least one squarefree number between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 44, 46, 47, 48, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2024

Keywords

Examples

			Primes 4 and 5 are 7 and 11, and the interval (8,9,10) contains 10, which is squarefree, so 4 is in the sequence.
		

Crossrefs

These are the positive positions in A061398, or terms >= 2 in A373198.
The complement (no squarefree numbers) is A068360.
For prime-power instead of squarefree we have A377057, strict version A377287.
For exactly one squarefree number we have A377430.
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composites, complement A008578.
A005117 lists the squarefree numbers, complement A013929.
A377038 gives k-differences of squarefree numbers.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],SquareFreeQ]]>=1&]

A377466 Numbers k such that there is more than one perfect power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

4, 9, 11, 30, 327, 445, 3512, 7789, 9361, 26519413
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect powers (A001597) are numbers with a proper integer root, the complement of A007916.
Is this sequence finite?
The Redmond-Sun conjecture (see A308658) implies that this sequence is finite. - Pontus von Brömssen, Nov 05 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24,25,26,27,28) contains two perfect powers (25,27), so 9 is in the sequence.
		

Crossrefs

For powers of 2 see A013597, A014210, A014234, A188951, A244508, A377467.
For no prime-powers we have A377286, ones in A080101.
For a unique prime-power we have A377287.
For squarefree numbers see A377430, A061398, A377431, A068360, A224363.
These are the positions of terms > 1 in A377432.
For a unique perfect power we have A377434.
For no perfect powers we have A377436.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A046933 counts the interval from A008864(n) to A006093(n+1).
A081676 gives the greatest perfect power <= n.
A131605 lists perfect powers that are not prime-powers.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053607, A304521.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Count[Range[Prime[#]+1, Prime[#+1]-1],_?perpowQ]>1&]
  • Python
    from itertools import islice
    from sympy import prime
    from gmpy2 import is_power, next_prime
    def A377466_gen(startvalue=1): # generator of terms >= startvalue
        k = max(startvalue,1)
        p = prime(k)
        while (q:=next_prime(p)):
            c = 0
            for i in range(p+1,q):
                if is_power(i):
                    c += 1
                    if c>1:
                        yield k
                        break
            k += 1
            p = q
    A377466_list = list(islice(A377466_gen(),9)) # Chai Wah Wu, Nov 04 2024

Formula

a(n) = A000720(A116086(n)) = A000720(A116455(n)) for n <= 10. This would hold for all n if there do not exist more than two perfect powers between any two consecutive primes, which is implied by the Redmond-Sun conjecture. - Pontus von Brömssen, Nov 05 2024

Extensions

a(10) from Pontus von Brömssen, Nov 04 2024

A377703 First differences of the sequence A345531(k) = least prime-power greater than the k-th prime.

Original entry on oeis.org

1, 3, 1, 5, 3, 3, 4, 2, 6, 1, 9, 2, 4, 2, 10, 2, 3, 7, 2, 6, 2, 8, 8, 4, 2, 4, 2, 4, 8, 7, 9, 2, 10, 2, 6, 6, 4, 2, 10, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 13, 7, 6, 2, 6, 4, 2, 6, 18, 4, 2, 4, 14, 6, 6, 6, 4, 6, 2, 12, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6
Offset: 1

Views

Author

Gus Wiseman, Nov 07 2024

Keywords

Comments

What is the union of this sequence? In particular, does it contain 17?

Crossrefs

First differences of A345531.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A080101 counts prime-powers between primes (exclusive).
A246655 lists the prime-powers, differences A057820 without first term.
A361102 lists the non-powers of primes, differences A375708.
A366833 counts prime-powers between primes, see A053607, A304521, A377057 (positive), A377286 (zero), A377287 (one), A377288 (two).
A377432 counts perfect-powers between primes, see A377434 (one), A377436 (zero), A377466 (multiple).

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&, Prime[n]+1,!PrimePowerQ[#]&],{n,100}]]
  • Python
    from sympy import factorint, prime, nextprime
    def A377703(n): return -next(filter(lambda m:len(factorint(m))<=1, count((p:=prime(n))+1)))+next(filter(lambda m:len(factorint(m))<=1, count(nextprime(p)+1))) # Chai Wah Wu, Nov 14 2024

A377283 Nonnegative integers k such that either k = 0 or there is a perfect power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

0, 2, 4, 6, 9, 11, 15, 18, 22, 25, 30, 31, 34, 39, 44, 47, 48, 53, 54, 61, 66, 68, 72, 78, 85, 92, 97, 99, 105, 114, 122, 129, 137, 146, 154, 162, 168, 172, 181, 191, 200, 210, 217, 219, 228, 240, 251, 263, 269, 274, 283, 295, 306, 309, 319, 327, 329, 342, 357
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Examples

			The first number-line below shows the perfect powers. The second shows each positive integer k at position prime(k).
-1-----4-------8-9------------16----------------25--27--------32------36----
===1=2===3===4=======5===6=======7===8=======9==========10==11==========12==
		

Crossrefs

A version for prime powers is A377057, exclusive A377287.
A version for squarefree numbers is A377431.
Positions of positive terms in A377432 (counts perfect powers between primes).
The case of a unique choice is A377434 (a subset).
The complement (no choices) is A377436.
The case of at least two choices is A377466 (a subset).
Positions of last appearances in A378249.
First-differences are A378251.
This is A378365 - 1, union of A378356 - 1.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[0,100],#==0||Length[Select[Range[Prime[#]+1,Prime[#+1]-1],perpowQ]]>0&]

A377288 Numbers k such that there are exactly two prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

4, 9, 30, 327, 3512
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Comments

Is this sequence finite? For this conjecture see A053706, A080101, A366833.
Any further terms are > 10^12. - Lucas A. Brown, Nov 08 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24, 25, 26, 27, 28) contains the prime-powers 25 and 27, so 9 is in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933 elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The corresponding primes are A053706.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
These are the positions of 2 in A080101, or 3 in A366833.
For at least one prime-power we have A377057, primes A053607.
For no prime-powers we have A377286.
For exactly one prime-power we have A377287.
For squarefree instead of prime-power see A377430, A061398, A377431, A068360.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==2&]

Formula

prime(a(n)) = A053706(n).

A377781 First differences of A065514(n) = greatest number < prime(n) that is 1 or a prime-power.

Original entry on oeis.org

1, 2, 1, 4, 2, 5, 1, 2, 8, 2, 3, 5, 4, 2, 6, 4, 6, 5, 3, 4, 2, 8, 2, 6, 8, 4, 2, 4, 2, 16, 3, 3, 6, 2, 10, 2, 6, 6, 6, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 4, 13, 1, 6, 6, 2, 6, 4, 8, 4, 14, 4, 2, 4, 14, 12, 4, 2, 4, 8, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2024

Keywords

Comments

Note 1 is a power of a prime but not a prime-power.

Crossrefs

Differences of A065514, which is the restriction of A031218 (differences A377782).
The opposite is A377703 (restriction of A000015), differences of A345531.
The opposite for nonsquarefree is A377784, differences of A377783.
For nonsquarefree we have A378034, differences of A378032 (restriction of A378033).
The opposite for squarefree is A378037, differences of A112926 (restriction of A067535).
For squarefree we have A378038, differences of A112925 (restriction of A070321).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime-powers, differences A057820.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A361102 lists the non-powers of primes, differences A375708.
Prime-powers between primes:
- A053607 primes
- A080101 count (exclusive)
- A304521 by bits
- A366833 count
- A377057 positive
- A377286 zero
- A377287 one
- A377288 two

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,Prime[n]-1,#>1&&!PrimePowerQ[#]&],{n,100}]]

A379155 Numbers k such that there is a unique prime between the k-th and (k+1)-th prime powers (A246655).

Original entry on oeis.org

2, 3, 5, 7, 9, 10, 13, 15, 17, 18, 22, 23, 26, 27, 31, 32, 40, 42, 43, 44, 52, 53, 67, 68, 69, 70, 77, 78, 85, 86, 90, 91, 116, 117, 119, 120, 135, 136, 151, 152, 169, 170, 186, 187, 197, 198, 243, 244, 246, 247, 291, 292, 312, 313, 339, 340, 358, 360, 362
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2024

Keywords

Comments

Numbers k such that exactly one of A246655(k) and A246655(k+1) is prime. - Robert Israel, Jan 22 2025
The prime powers themselves are: 3, 4, 7, 9, 13, 16, 23, 27, 31, 32, 47, 49, 61, 64, ...

Examples

			The 4th and 5th prime powers are 5 and 7, with interval (5,6,7) containing two primes, so 4 is not in the sequence.
The 13th and 14th prime powers are 23 and 25, with interval (23,24,25) containing only one prime, so 13 is in the sequence.
The 18th and 19th prime powers are 32 and 37, with interval (32,33,34,35,36,37) containing just one prime 37, so 18 is in the sequence.
		

Crossrefs

These are the positions of 1 in A366835, for perfect powers A080769.
For perfect powers instead of prime powers we have A378368.
For no primes we have A379156, for perfect powers A274605.
The prime powers themselves are A379157, for previous A175106.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Maple
    N:= 1000: # for terms k where A246655(k+1) <+ N
    P:= select(isprime,[2,seq(i,i=3..N,2)]):
    S:= convert(P,set):
    for p in P while p^2 <= N do
      S:= S union {seq(p^j,j=2..ilog[p](N))}
    od:
    PP:= sort(convert(S,list)):
    state:= 1: Res:= NULL:
    ip:= 2:
    for i from 2 to nops(PP) do
      if PP[i] = P[ip] then
        if state = 0 then Res:= Res,i-1 fi;
        state:= 1;
        ip:= ip+1;
      else
        if state = 1 then Res:= Res,i-1 fi;
        state:= 0;
      fi
    od:
    Res; # Robert Israel, Jan 22 2025
  • Mathematica
    v=Select[Range[100],PrimePowerQ];
    Select[Range[Length[v]-1],Length[Select[Range[v[[#]],v[[#+1]]],PrimeQ]]==1&]

Formula

A246655(a(n)) = A379157(n).

A068315 For numbers k such that A025474(k) > 1 and A025474(k+1) > 1, sequence gives A000961(k).

Original entry on oeis.org

8, 25, 121, 2187, 32761
Offset: 1

Views

Author

Naohiro Nomoto, Mar 08 2002

Keywords

Comments

Equivalently, prime powers (either A000961 or A246655) q such that q and the next prime power are both composite numbers. - Paolo Xausa, Oct 25 2023

Examples

			The interval (121,122,123,124,125) contains no primes, so 121 is in the sequence. - _Gus Wiseman_, Dec 24 2024
		

Crossrefs

Bisection of A068435.
For perfect powers instead of prime powers we have A116086, indices A274605.
The position of a(k) in the prime powers A246655 is A379156(k).
For just one prime we have A379157, indices A379155.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A031218 gives the greatest prime power <= n.
A046933 gives run-lengths of composites between primes.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers, differences A057820.
A366833 counts prime powers between primes, see A053607, A304521.
A366835 counts primes between prime powers.

Programs

  • Mathematica
    With[{upto=33000},Map[First,Select[Partition[Select[Range[upto],PrimePowerQ],2,1],NoneTrue[#,PrimeQ]&]]] (* Paolo Xausa, Oct 25 2023 *)

Formula

a(n) = A246655(A379156(n)). - Gus Wiseman, Dec 24 2024

Extensions

Definition corrected by Jinyuan Wang, Sep 05 2020

A377782 First-differences of A031218(n) = greatest number <= n that is 1 or a prime-power.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 0, 3, 1, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 0, 2, 1, 0, 0, 0, 0, 5, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 3, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 6, 0, 2, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Comments

Note 1 is a power of a prime (A000961) but not a prime-power (A246655).

Crossrefs

Positions of 1 are A006549.
Positions of 0 are A080765 = A024619 - 1, complement A181062 = A000961 - 1.
Positions of 2 are A120432 (except initial terms).
Sorted positions of first appearances appear to include A167236 - 1.
Positions of terms > 1 are A373677.
The restriction to primes minus 1 is A377289.
Below, A (B) indicates that A is the first-differences of B:
- This sequence is A377782 (A031218), which has restriction to primes A065514 (A377781).
- The opposite is A377780 (A000015), restriction A377703 (A345531).
- For nonsquarefree we have A378036 (A378033), opposite A378039 (A120327).
- For squarefree we have A378085 (A112925), restriction A378038 (A070321).
A000040 lists the primes, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A361102 lists the non-powers of primes, differences A375708.
A378034 gives differences of A378032 (restriction of A378033).
Prime-powers between primes: A053607, A080101, A366833, A377057, A377286, A377287.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,n,#>1&&!PrimePowerQ[#]&],{n,100}]]
Previous Showing 11-20 of 30 results. Next