cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A382078 Number of integer partitions of n that cannot be partitioned into a set of sets.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 126, 168, 207, 266, 343, 428, 534, 675, 832, 1039, 1279, 1575, 1933, 2381, 2881, 3524, 4269, 5179, 6237, 7525, 9033, 10860, 12969, 15512, 18475, 22005, 26105, 30973, 36642, 43325, 51078, 60184, 70769, 83152
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2025

Keywords

Comments

First differs from A240309 at a(11) = 23, A240309(11) = 25.
First differs from A381990 at a(17) = 126, A381990(17) = 127.

Examples

			The partition y = (2,2,1,1,1) can be partitioned into sets in the following ways:
  {{1},{1,2},{1,2}}
  {{1},{1},{2},{1,2}}
  {{1},{1},{1},{2},{2}}
But none of these is itself a set, so y is counted under a(7).
The a(2) = 1 through a(8) = 9 partitions:
  (11)  (111)  (22)    (2111)   (33)      (2221)     (44)
               (1111)  (11111)  (222)     (4111)     (2222)
                                (3111)    (22111)    (5111)
                                (21111)   (31111)    (22211)
                                (111111)  (211111)   (41111)
                                          (1111111)  (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
For normal multisets see A292432, A292444, A116539.
These partitions are ranked by A293243, complement A382200.
The MM-numbers of these multiset partitions (set of sets) are A302494.
Twice-partitions of this type are counted by A358914.
For distinct sums we have A381990 (ranks A381806), complement A381992 (ranks A382075).
The complement is counted by A382077, unique A382079.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions into distinct sets, complement A050345.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]==0&]],{n,0,9}]

Extensions

a(19)-a(50) from Bert Dobbelaere, Mar 29 2025

A383711 Number of integer partitions of n with no ones such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 1, 3, 3, 4, 6, 10, 11, 17, 19, 30, 36, 51, 61, 84, 96, 133, 160, 209, 253, 325, 393, 488, 598, 744
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

The Heinz numbers of these partitions are the odd terms of A382912.
Also the number of integer partitions of n with no ones whose normal multiset (in which i appears y_i times) is not a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is not counted under a(6).
The a(4) = 1 through a(12) = 10 partitions:
  (22)  .  (222)  (322)  (332)   (333)   (622)    (443)    (444)
                         (422)   (522)   (3322)   (722)    (822)
                         (2222)  (3222)  (4222)   (3332)   (3333)
                                         (22222)  (4322)   (4332)
                                                  (5222)   (4422)
                                                  (32222)  (5322)
                                                           (6222)
                                                           (33222)
                                                           (42222)
                                                           (222222)
		

Crossrefs

The complement without ones is counted by A383533.
The number of these families is A383706.
Allowing ones gives A383710 (ranks A382912), complement A383708 (ranks A382913).
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&pof[#]=={}&]],{n,0,15}]

A381436 Irregular triangle read by rows where row k is the section-sum partition of the prime indices of n.

Original entry on oeis.org

1, 2, 1, 1, 3, 3, 4, 1, 1, 1, 2, 2, 4, 5, 3, 1, 6, 5, 5, 1, 1, 1, 1, 7, 3, 2, 8, 4, 1, 6, 6, 9, 3, 1, 1, 3, 3, 7, 2, 2, 2, 5, 1, 10, 6, 11, 1, 1, 1, 1, 1, 7, 8, 7, 3, 3, 12, 9, 8, 4, 1, 1, 13, 7, 14, 6, 1, 5, 2, 10, 15, 3, 1, 1, 1, 4, 4, 4, 3, 9, 7, 1, 16, 3, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2025

Keywords

Comments

Row-lengths are A051903.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The section-sum partition of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The prime indices of 24 are (2,1,1,1), with sections ((2,1),(1),(1)), so row 24 is (3,1,1).
Triangle begins:
   1: (empty)
   2: 1
   3: 2
   4: 1 1
   5: 3
   6: 3
   7: 4
   8: 1 1 1
   9: 2 2
  10: 4
  11: 5
  12: 3 1
  13: 6
  14: 5
  15: 5
  16: 1 1 1 1
		

Crossrefs

Row-lengths are A051903.
Row sums are A056239.
First part in each row is A066328.
Taking length instead of sum gives A238744, Heinz numbers A238745, conjugate A181819.
Partitions of this type are counted by A239455, complement A351293.
Heinz numbers are A381431 (union A381432, complement A381433, fixed A000961, A000005).
Rows appearing only once have Heinz numbers A381434, more than once A381435.
Last part in each row is A381437, counted by A381438.
The conjugate is A381440, Heinz numbers A048767 (union A351294, complement A351295).
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Table[egs[prix[n]],{n,100}]

A384317 Number of integer partitions of n with more than one possible way to choose disjoint strict partitions of each part.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 4, 4, 5, 5, 12, 12, 16, 19, 22, 35, 38, 48, 58, 68, 79, 110, 121, 149, 175, 207, 242, 281, 352, 397, 473
Offset: 0

Views

Author

Gus Wiseman, May 28 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			There are two possibilities for (4,3), namely ((4),(3)) and ((4),(2,1)), so (4,3) is counted under a(7).
The a(3) = 1 through a(11) = 12 partitions:
  (3)  (4)  (5)  (6)    (7)    (8)    (9)    (10)     (11)
                 (3,3)  (4,3)  (4,4)  (5,4)  (5,5)    (6,5)
                 (4,2)  (5,2)  (5,3)  (6,3)  (6,4)    (7,4)
                 (5,1)  (6,1)  (6,2)  (7,2)  (7,3)    (8,3)
                               (7,1)  (8,1)  (8,2)    (9,2)
                                             (9,1)    (10,1)
                                             (4,3,3)  (5,3,3)
                                             (4,4,2)  (5,4,2)
                                             (5,3,2)  (5,5,1)
                                             (5,4,1)  (6,3,2)
                                             (6,3,1)  (7,3,1)
                                             (7,2,1)  (8,2,1)
		

Crossrefs

The case of a unique choice is A179009, ranks A383707.
The case of at least one choice is A383708, ranks A382913.
The case of no choices is A383710, ranks A382912.
The strict case is A384318, ranks A384322.
These partitions are ranked by A384321, positions of terms > 1 in A383706.
The case of a unique proper choice is A384323, ranks A384347, strict A384319.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A357982 counts choices of strict partitions of prime indices, non-strict A299200.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[pof[#]]>1&]],{n,0,30}]

Formula

a(n) = A383708(n) - A179009(n).

A384322 Heinz numbers of strict integer partitions with more than one possible way to choose disjoint strict partitions of each part, i.e., strict partitions that can be properly refined.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2025

Keywords

Examples

			The strict partition (7,2,1) with Heinz number 102 can be properly refined into (4,3,2,1), so 102 is in the sequence.
The terms together with their prime indices begin:
     5: {3}      46: {1,9}      85: {3,7}
     7: {4}      47: {15}       86: {1,14}
    11: {5}      51: {2,7}      87: {2,10}
    13: {6}      53: {16}       89: {24}
    17: {7}      55: {3,5}      91: {4,6}
    19: {8}      57: {2,8}      93: {2,11}
    21: {2,4}    58: {1,10}     94: {1,15}
    22: {1,5}    59: {17}       95: {3,8}
    23: {9}      61: {18}       97: {25}
    26: {1,6}    62: {1,11}    101: {26}
    29: {10}     65: {3,6}     102: {1,2,7}
    31: {11}     67: {19}      103: {27}
    33: {2,5}    69: {2,9}     106: {1,16}
    34: {1,7}    71: {20}      107: {28}
    35: {3,4}    73: {21}      109: {29}
    37: {12}     74: {1,12}    111: {2,12}
    38: {1,8}    77: {4,5}     113: {30}
    39: {2,6}    79: {22}      114: {1,2,8}
    41: {13}     82: {1,13}    115: {3,9}
    43: {14}     83: {23}      118: {1,17}
		

Crossrefs

The non-strict version for no choices appears to be A382912, count A383710, odd A383711.
The non-strict version for > 0 choice appears to be A382913, count A383708, odd A383533.
These are the squarefree positions of terms > 1 in A383706, see A357982, A299200.
The case of a unique choice is A383707, counted by A179009.
Partitions of this type are counted by A384318.
This is the strict/squarefree case of A384321, counted by A384317.
The case of a unique proper choice is A384390, counted by A384319, non-strict A384323.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    Select[Range[100],UnsameQ@@prix[#]&&Length[pof[prix[#]]]>1&]

A381440 Irregular triangle read by rows where row k is the Look-and-Say partition of the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2025

Keywords

Comments

Row lengths are A066328.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455.

Examples

			The prime indices of 24 are (2,1,1,1), with Look-and-Say partition (3,1,1), so row 24 is (3,1,1).
The prime indices of 36 are (2,2,1,1), with Look-and-Say partition (2,2,2), so row 36 is (2,2,2).
Triangle begins:
   1: (empty)
   2: 1
   3: 1 1
   4: 2
   5: 1 1 1
   6: 1 1 1
   7: 1 1 1 1
   8: 3
   9: 2 2
  10: 1 1 1 1
  11: 1 1 1 1 1
  12: 2 1 1
  13: 1 1 1 1 1 1
  14: 1 1 1 1 1
  15: 1 1 1 1 1
  16: 4
  17: 1 1 1 1 1 1 1
  18: 2 2 1
  19: 1 1 1 1 1 1 1 1
		

Crossrefs

Heinz numbers are A048767 (union A351294, complement A351295, fixed A048768, A217605).
First part in each row is A051903, conjugate A066328.
Last part in each row is A051904, conjugate A381437 (counted by A381438).
Row sums are A056239.
Row lengths are A066328.
Partitions of this type are counted by A239455, complement A351293.
The conjugate is A381436, Heinz numbers A381431 (union A381432, complement A381433).
Rows appearing only once have Heinz numbers A381540, more than once A381541.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    Table[Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>ConstantArray[k,PrimePi[p]]]]//Reverse,{n,30}]

A384320 Heinz numbers of integer partitions whose distinct parts are maximally refined.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 45, 48, 50, 54, 56, 60, 64, 66, 70, 72, 75, 78, 80, 81, 84, 90, 96, 98, 100, 105, 108, 110, 112, 120, 126, 128, 132, 135, 140, 144, 150, 156, 160, 162, 168, 180, 182, 192, 196
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Given a partition, the following are equivalent:
1) The distinct parts are maximally refined.
2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
3) No part is a sum of distinct non-parts.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   30: {1,2,3}
   32: {1,1,1,1,1}
		

Crossrefs

The squarefree case is A383707, counted by A179009.
The complement appears to be A384321, strict case A384322, counted by A384318.
Partitions of this type are counted by A384392.
A048767 is the Look-and-Say transform, fixed points A048768.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
Cf. A383706, A357982 (non-disjoint), A299200 (non-strict).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Select[Range[20],With[{y=Union[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&]

A381452 Number of multisets that can be obtained by partitioning the prime indices of n into a set of multisets and taking their sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 4, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 6, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 8, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A045778 at a(24) = 4, A045778(24) = 5.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into distinct factors > 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Sets of multisets are generally not transitive. For example, we have arrows: {{1},{2},{1,2}}: {1,1,2,2} -> {1,2,3} and {{1,2},{3}}: {1,2,3} -> {3,3}, but there is no set of multisets {1,1,2,2} -> {3,3}.

Examples

			The prime indices of 24 are {1,1,1,2}, with 5 partitions into a set of multisets:
  {{1,1,1,2}}
  {{1},{1,1,2}}
  {{2},{1,1,1}}
  {{1,1},{1,2}}
  {{1},{2},{1,1}}
with block-sums: {5}, {1,4}, {2,3}, {2,3}, {1,2,2}, of which 4 are distinct, so a(24) = 4.
		

Crossrefs

Before taking sums we had A045778.
If each block is a set we have A381441, before sums A050326.
For distinct block-sums instead of blocks we have A381637, before sums A321469.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
- For sets of constant multisets (A050361) see A381715.
- For set systems with distinct sums (A381633) see A381634, zeros A293243.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
More on sets of multisets: A261049, A317776, A317775, A296118, A318286.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&]]],{n,100}]

Formula

a(A002110(n)) = A066723(n).

A384390 Heinz numbers of integer partitions with a unique proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

5, 7, 21, 22, 26, 33, 35, 39, 102, 114, 130, 154, 165, 170, 190, 195, 231, 238, 255, 285
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint in the strict case.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The strict partition (7,2,1) with Heinz number 102 can only be properly refined as ((4,3),(2),(1)), so 102 is in the sequence. The other refinement ((7),(2),(1)) is not proper.
The terms together with their prime indices begin:
    5: {3}
    7: {4}
   21: {2,4}
   22: {1,5}
   26: {1,6}
   33: {2,5}
   35: {3,4}
   39: {2,6}
  102: {1,2,7}
  114: {1,2,8}
  130: {1,3,6}
  154: {1,4,5}
  165: {2,3,5}
  170: {1,3,7}
  190: {1,3,8}
  195: {2,3,6}
  231: {2,4,5}
  238: {1,4,7}
  255: {2,3,7}
  285: {2,3,8}
		

Crossrefs

The non-proper version is A383707, counted by A179009.
Partitions of this type are counted by A384319, non-strict A384323 (ranks A384347).
This is the unique case of A384321, counted by A384317.
This is the case of a unique proper choice in A384322.
The complement is A384349 \/ A384393.
These are positions of 1 in A384389.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A357982 counts strict partitions of each prime index, non-strict A299200.
Cf. A382912, counted by A383710, odd case A383711.
Cf. A382913, counted by A383708, odd case A383533.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Select[Range[100],Length[pofprop[prix[#]]]==1&]

A382079 Number of integer partitions of n that can be partitioned into a set of sets in exactly one way.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 6, 5, 10, 9, 13, 14, 21, 20, 32, 31, 42, 47, 63, 62, 90, 94, 117, 138, 170, 186, 235, 260, 315, 363, 429, 493, 588, 674, 795, 901, 1060, 1209, 1431, 1608, 1896, 2152, 2515, 2854, 3310, 3734, 4368, 4905, 5686
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2025

Keywords

Examples

			The unique multiset partition for (3222111) is {{1},{2},{1,2},{1,2,3}}.
The a(1) = 1 through a(12) = 13 partitions:
  1  2  3  4    5    6     7    8      9      A      B      C
           211  221  411   322  332    441    433    443    552
                311  2211  331  422    522    442    533    633
                           511  611    711    622    551    822
                                3311   42111  811    722    A11
                                32111         3322   911    4422
                                              4411   42221  5511
                                              32221  53111  33321
                                              43111  62111  52221
                                              52111         54111
                                                            63111
                                                            72111
                                                            3222111
		

Crossrefs

Normal multiset partitions of this type are counted by A116539, see A381718.
These partitions are ranked by A293511.
MM-numbers of these multiset partitions (sets of sets) are A302494, see A302478, A382201.
Twice-partitions of this type (sets of sets) are counted by A358914, see A279785.
For at least one choice we have A382077 (ranks A382200), see A381992 (ranks A382075).
For no choices we have A382078 (ranks A293243), see A381990 (ranks A381806).
For distinct block-sums instead of blocks we have A382460, ranked by A381870.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets, see A381633.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    ssfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[ssfacs[n/d],Min@@#>d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Select[IntegerPartitions[n],Length[ssfacs[Times@@Prime/@#]]==1&]],{n,0,15}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025
Previous Showing 21-30 of 45 results. Next