cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A386632 Numbers k such that there is a disjoint inseparable way to choose a strict integer partition of each exponent in the prime factorization of k.

Original entry on oeis.org

8, 16, 27, 32, 64, 81, 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1331, 1536, 2048, 2187, 2197, 2304, 2401, 2560, 3072, 3125, 3456, 3584, 4096, 4608, 4913, 5120, 5184, 5632, 6144, 6400, 6561, 6656, 6859, 6912, 7168, 8192, 8704, 9216, 9728, 10240, 11264
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2025

Keywords

Comments

First cubefull number (A246549) not in this sequence is 216.
The first term that is not a prime power is 1536.
A set partition is inseparable iff the underlying set has no permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.

Examples

			The prime indices of 2304 are {1,1,1,1,1,1,1,1,2,2}, and we have disjoint inseparable choice {{4,3,1},{2}}, so 2304 is in the sequence.
The terms together with their prime indices begin:
     8: {1,1,1}
    16: {1,1,1,1}
    27: {2,2,2}
    32: {1,1,1,1,1}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   125: {3,3,3}
   128: {1,1,1,1,1,1,1}
   243: {2,2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   343: {4,4,4}
   512: {1,1,1,1,1,1,1,1,1}
   625: {3,3,3,3}
   729: {2,2,2,2,2,2}
		

Crossrefs

This is the inseparable case of A351294, positives in A386575, counted by A239455.
Also positions of positive terms in A386582.
A000110 counts set partitions, ordered A000670.
A003242 and A335452 count separations, ranks A333489.
A025065/A386638 counts inseparable type partitions, ranks A335126, sums of A386586.
A325534 counts separable multisets, ranks A335433, sums of A386583.
A325535 counts inseparable multisets, ranks A335448, sums of A386584.
A336106 counts separable type partitions, ranks A335127, sums of A386585.
A386633 counts separable type set partitions, row sums of A386635.
A386634 counts inseparable type set partitions, row sums of A386636.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    dsj[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    insepQ[y_]:=2*Max[y]>Total[y]+1;
    Join@@Position[Sign[Table[Length[Select[dsj[prix[n]],insepQ[Length/@#]&]],{n,1000}]],1]

A382775 Least number appearing n times in A048767 (rank of Look-and-Say partition of prime indices).

Original entry on oeis.org

6, 1, 8, 32, 64, 128, 256, 6144, 512, 27648, 1024, 73728, 2048, 147456, 165888, 4096, 248832, 196608, 8192, 497664, 1119744, 393216, 16384, 2239488
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2025

Keywords

Comments

Also the position of first appearance of n in A382525 (number of times n appears in A048767).
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. Hence, the multiplicity of k in the Look-and-Say partition of y is the sum of all parts that appear exactly k times. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
       6: {1,2}
       1: {}
       8: {1,1,1}
      32: {1,1,1,1,1}
      64: {1,1,1,1,1,1}
     128: {1,1,1,1,1,1,1}
     256: {1,1,1,1,1,1,1,1}
    6144: {1,1,1,1,1,1,1,1,1,1,1,2}
     512: {1,1,1,1,1,1,1,1,1}
   27648: {1,1,1,1,1,1,1,1,1,1,2,2,2}
    1024: {1,1,1,1,1,1,1,1,1,1}
   73728: {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
    2048: {1,1,1,1,1,1,1,1,1,1,1}
  147456: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
  165888: {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
    4096: {1,1,1,1,1,1,1,1,1,1,1,1}
  248832: {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
		

Crossrefs

Positions of first appearances in A382525.
The Look-and-Say partition is ranked by A048767, listed by A381440.
Look-and-Say partitions are counted by A239455, complement A351293.
Look-and-Say partitions are ranked by A351294.
Non-Look-and-Say partitions are ranked by A351295, conjugate A381433.
The section-sum partition is ranked by A381431, listed by A381436.
Section-sum partitions are ranked by A381432.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.

Programs

  • Mathematica
    stp[y_]:=Select[Tuples[Select[IntegerPartitions[#], UnsameQ@@#&]&/@y],UnsameQ@@Join@@#&];
    z=Table[Length[stp[Last/@FactorInteger[n]]],{n,10000}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[z,k][[1,1]],{k,0,mnrm[z+1]-1}]

A384010 Heinz numbers of integer partitions such that it is possible to choose a family of disjoint strict partitions, one of each conjugate part.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 24, 27, 30, 32, 36, 48, 54, 60, 64, 72, 81, 90, 96, 108, 120, 128, 144, 150, 162, 180, 192
Offset: 1

Views

Author

Gus Wiseman, May 23 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The prime indices of 96 are {1,1,1,1,1,2}, conjugate (6,1), disjoint family (4,2,1), so 96 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For multiplicities instead of indices we have A382525.
These partitions are counted by A383708, without ones A383533, complement A383711.
These are the positions of positive terms in A384005.
The complement is A384011, conjugate A383710.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represent conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],pof[conj[prix[#]]]!={}&]

A384906 Number of maximal anti-runs of consecutive parts not increasing by 1 in the prime indices of n (with multiplicity).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2025

Keywords

Comments

First differs from A300820 at a(462) = 3, A300820(462) = 2.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 462 are {1,2,4,5}, with maximal anti-runs ((1),(2,4),(5)), so a(462) = 3.
		

Crossrefs

For the strict case we have A356228.
For binary instead of prime indices we have A384890 (for runs A069010).
For runs instead of anti-runs we have A385213.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Split[prix[n],#2!=#1+1&]],{n,100}]

A385213 Number of maximal runs of consecutive parts increasing by 1 in the prime indices of n (with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 1, 3, 2, 2, 3, 3, 1, 1, 1, 5, 2, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 3, 2, 2, 1, 4, 2, 3, 2, 3, 1, 3, 2, 4, 2, 2, 1, 2, 1, 2, 3, 6, 2, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 2, 1, 5, 4, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 24 are {1,1,1,2}, with maximal runs ((1),(1),(1,2)), so a(24) = 3.
		

Crossrefs

Positions of first appearances are A000079.
For binary instead of prime indices we have A069010 (for anti-runs A384890).
For anti-runs instead of runs we have A384906.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Split[prix[n],#2==#1+1&]],{n,100}]

A386578 Irregular triangle read by rows where T(n,k) is the number of permutations of row n of A305936 (a multiset whose multiplicities are the prime indices of n) with k adjacent equal parts.

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 6, 0, 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, 6, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 1, 4, 3, 2, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 12, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 12, 6, 0, 0, 0, 3, 6, 4, 2, 0
Offset: 2

Views

Author

Gus Wiseman, Aug 04 2025

Keywords

Comments

Row 1 is empty, so offset is 2.
Same as A386579 with rows reversed.
This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			Row n = 21 counts the following permutations:
  .  112121  111212  111221  111122  .
     121121  112112  112211  221111
     121211  121112  122111
             211121  211112
             211211
             212111
Triangle begins
   .
   1
   0  1
   2  0
   0  0  1
   1  2  0
   0  0  0  1
   6  0  0
   2  2  2  0
   0  2  2  0
   0  0  0  0  1
   6  6  0  0
   0  0  0  0  0  1
   0  0  3  2  0
   1  4  3  2  0
  24  0  0  0
   0  0  0  0  0  0  1
  12 12  6  0  0
   0  0  0  0  0  0  0  1
   2 12  6  0  0
   0  3  6  4  2  0
		

Crossrefs

Column k = last is A010051.
Row lengths are A056239.
Initial zeros are counted by A252736 = A001222 - 1.
Row sums are A318762.
Column k = 0 is A335125.
For prime indices we have A386577.
Reversing all rows gives A386579.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586.
A124762 gives inseparability of standard compositions, separability A333382.
A305936 is a multiset whose multiplicities are the prime indices of n.
A325534 counts separable multisets, ranks A335433, sums of A386583.
A325535 counts inseparable multisets, ranks A335448, sums of A386584.
A336106 counts partitions of separable type, ranks A335127, sums of A386585.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aqt[c_,x_]:=Select[Permutations[c],Function[q,Length[Select[Range[Length[q]-1],q[[#]]==q[[#+1]]&]]==x]];
    Table[Table[Length[aqt[nrmptn[n],k]],{k,0,Length[nrmptn[n]]-1}],{n,30}]

A384011 Numbers k such that it is not possible to choose disjoint strict integer partitions of each conjugate prime index of k.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, May 23 2025

Keywords

Comments

A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798.

Examples

			The terms together with their prime indices begin:
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   19: {8}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   23: {9}
   25: {3,3}
   26: {1,6}
   28: {1,1,4}
		

Crossrefs

The conjugate is A382912.
These complement is counted by A383708, ranks A382913 or A384010.
These partitions are counted by A383710, conjugate A383711.
These are the positions of 0 in A384005, conjugate A383706.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represent conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],pof[conj[prix[#]]]=={}&]

A384348 Number of integer partitions of n with no proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 7, 11, 17, 25, 30, 44, 61, 82, 113, 141, 193, 249, 327, 422, 548, 682, 881, 1106, 1400, 1751
Offset: 0

Views

Author

Gus Wiseman, May 30 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree.

Examples

			For the partition y = (5,4,2,1) we have the following proper ways to choose strict partitions of each part:
  ((5),(3,1),(2),(1))
  ((4,1),(4,2),(1))
  ((4,1),(3,1),(2),(1))
  ((3,2),(4),(2),(1))
  ((3,2),(3,1),(2),(1))
But none of this is disjoint, so y is counted under a(12).
The a(1) = 1 through a(8) = 17 partitions:
  (1)  (2)   (21)   (22)    (32)     (222)     (322)      (332)
       (11)  (111)  (31)    (41)     (321)     (331)      (422)
                    (211)   (221)    (411)     (421)      (431)
                    (1111)  (311)    (2211)    (511)      (521)
                            (2111)   (3111)    (2221)     (611)
                            (11111)  (21111)   (3211)     (2222)
                                     (111111)  (4111)     (3221)
                                               (22111)    (3311)
                                               (31111)    (4211)
                                               (211111)   (5111)
                                               (1111111)  (22211)
                                                          (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The strict case is A179009, ranked by A383707.
This is the proper version of A383710, odd case A383711.
This is the proper complement of A383708, odd case A383533.
The complement is counted by A384317, ranks A384321.
The strict version for at least one proper choice is A384318, ranked by A384322.
For just one proper choice we have A384319, ranked by A384390.
For two choices we have A384323, ranks A384347 = positions of 2 in A383706.
These partitions are ranked by A384349.
For more than one proper choice we have A384395, ranked by A384393.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[pofprop[#]]==0&]],{n,0,15}]

A384394 Number of proper ways to choose disjoint strict integer partitions, one of each conjugate prime index of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
By "proper" we exclude the case of all singletons.

Examples

			The prime indices of 216 are {1,1,1,2,2,2}, with conjugate partition (6,3), with proper choices ((6),(2,1)), ((5,1),(3)), and ((4,2),(3)), so a(216) = 3.
		

Crossrefs

Conjugate prime indices are the rows of A122111.
The non-proper version is A384005, conjugate A383706.
This is the conjugate version of A384389 (firsts A384396).
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
See also A382912, counted by A383710, odd case A383711.
See also A382913, counted by A383708, odd case A383533.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Table[Length[pofprop[conj[prix[n]]]],{n,100}]

A384395 Number of integer partitions of n with more than one proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 1, 4, 5, 8, 8, 12, 17, 22, 29, 31, 40, 50, 65, 77, 101, 112, 135, 162, 201
Offset: 0

Views

Author

Gus Wiseman, May 30 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree.

Examples

			For the partition (8,5,2) we have four choices:
  ((8),(4,1),(2))
  ((7,1),(5),(2))
  ((5,3),(4,1),(2))
  ((4,3,1),(5),(2))
Hence (8,5,2) is counted under a(15).
The a(5) = 1 through a(12) = 12 partitions:
  (5)  (6)    (7)  (8)    (9)    (10)     (11)     (12)
       (3,3)       (4,4)  (5,4)  (5,5)    (6,5)    (6,6)
                   (5,3)  (6,3)  (6,4)    (7,4)    (7,5)
                   (7,1)  (7,2)  (7,3)    (8,3)    (8,4)
                          (8,1)  (8,2)    (9,2)    (9,3)
                                 (9,1)    (10,1)   (10,2)
                                 (4,3,3)  (5,3,3)  (11,1)
                                 (4,4,2)  (5,5,1)  (5,5,2)
                                                   (6,3,3)
                                                   (6,4,2)
                                                   (6,5,1)
                                                   (9,2,1)
		

Crossrefs

For just one choice we have A179009, ranked by A383707.
Twice-partitions of this type are counted by A279790.
For at least one choice we have A383708, odd case A383533.
For no choices we have A383710, odd case A383711.
For at least one proper choice we have A384317, ranked by A384321.
The strict version for at least one proper choice is A384318, ranked by A384322.
The strict version for just one proper choice is A384319, ranked by A384390.
For just one proper choice we have A384323, ranks A384347 = positions of 2 in A383706.
For no proper choices we have A384348, ranked by A384349.
These partitions are ranked by A384393.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.
A357982 counts choices of strict partitions of each prime index, non-strict A299200.

Programs

  • Mathematica
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[pofprop[#]]>1&]],{n,0,15}]
Previous Showing 21-30 of 32 results. Next