A232551
Number of distinct primitive quadratic forms of discriminant -4n that exist such that every prime p for which -n is a quadratic residue mod p can be represented by one of them.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 4, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 3, 4, 3, 4, 3, 2, 4, 3, 4, 5, 4, 2, 4, 4, 3, 3, 4, 3, 4, 4, 3, 4, 4, 3, 6, 4, 2, 5, 4, 4, 5, 3, 3, 6, 6, 2, 5, 6, 4, 4, 4, 3, 6, 4, 4, 6, 4, 3, 6, 4, 3, 5, 6, 4, 6, 4, 4, 7, 6, 4, 4, 4, 5, 5, 6, 3, 5, 4, 3
Offset: 1
If n = 1, 2, 3, 4 or 7, then the only such available quadratic form is x^2+n*y^2.
For n = 5, every prime that is congruent to {1, 2, 3, 5, 7, 9} mod 20 can be represented by either of the two distinct primitive quadratic forms of discriminant = -20: x^2+5*y^2 or 2*x^2+2*x*y+3*y^2.
For n = 6, every prime that is congruent to {1, 2, 3, 5, 7, 11} mod 24 can be represented by either of the two distinct primitive quadratic forms of discriminant = -24: x^2+6*y^2 or 2*x^2+3*y^2.
For n = 10, every prime that is congruent to {1, 2, 5, 7, 9, 11, 13, 19, 23, 37} mod 40 can be represented by either of the two distinct primitive quadratic forms of discriminant = -40: x^2+10*y^2 or 2*x^2+5*y^2.
Cf.
A000003,
A000926,
A232529,
A232530,
A232550 (Number of distinct primitive quadratic forms of discriminant = -4*n needed to generate all primes p for which p is a quadratic residue (mod 4*n) or p-n is a quadratic residue (mod 4*n)).
A101101
a(1)=1, a(2)=5, and a(n)=6 for n >= 3.
Original entry on oeis.org
1, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al.), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [broken link: domain now owned by a domain grabber]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883.
- Eric Weisstein, Link to section of MathWorld: Eulerian Number.
- Eric Weisstein, Link to section of MathWorld: Nexus number.
- Eric Weisstein, Link to section of MathWorld: Finite Differences.
- Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
- Index entries for linear recurrences with constant coefficients, signature (1).
Within the "cube" of related sequences with construction based upon MaginNKZ formula, with n downward, k rightward and z backward:
Within the "cube" of related sequences with construction based upon SeriesAtLevelR formula, with n downward, x rightward and r backward:
-
MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 3, 3}, {z, 1, 1}, {k, 0, 34}] (* OR *)
SeriesAtLevelR = Sum[Eulerian[n, i - 1]*Binomial[n + x - i + r, n + r], {i, 1, n}]; Table[SeriesAtLevelR, {n, 3, 3}, {r, -3, -3}, {x, 4, 35}]
Join[{1, 5},LinearRecurrence[{1},{6},78]] (* Ray Chandler, Sep 23 2015 *)
I wish the sequence was as interesting as the list of references! -
N. J. A. Sloane
A102411
Even triangle !n. This table read by rows gives the coefficients of sum formulas of n-th Left factorials (A003422). The k-th row (6>=k>=1) contains T(i,k) for i=1 to k+2, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies !n = Sum_{i=1..k+2} T(i,k) * n^(i-1) / (2*k-2)!.
Original entry on oeis.org
0, 1, 0, -16, 5, 1, 0, 5256, -3068, 276, 32, 0, 2070720, 2367420, -912150, 53220, 3510, 0, -36031524480, 15327895296, -40587120, -387492840, 21414120, 758184, 840, -212459319878400, -75473246681280, 38182549456800, -2562251680800, -195611371200, 13639812480, 285616800, 453600
Offset: 1
Triangle starts:
0, 1, 0;
-16, 5, 1, 0;
5256, -3068, 276, 32, 0;
2070720, 2367420, -912150, 53220, 3510, 0;
-36031524480, 15327895296, -40587120, -387492840, 21414120, 758184, 840;
...
!11=4037914; substituting n=11 in the formula of the k-th row we obtain k=6 and the coefficients T(i,6) are those needed for computing !11.
=> !11 = [ -212459319878400 -75473246681280*11 +38182549456800*11^2 -2562251680800*11^3 -195611371200*11^4 +13639812480*11^5 +285616800*11^6 +453600*11^7 ]/10! = 4037914.
Cf.
A102412,
A094638,
A094216,
A003422,
A008276,
A101752,
A102409,
A102410,
A101751,
A000142,
A101559,
A101032,
A099731.
A102412
Odd triangle !n. This table read by rows gives the coefficients of sum formulas of n-th Left factorials (A003422). The k-th row (6>=k>=1) contains T(i,k) for i=1 to k+1, where k=[2*n+3+(-1)^n]/4 and T(i,k) satisfies !n = Sum_{i=1..k+1} T(i,k) * n^(i-1) / (2*k-2)!.
Original entry on oeis.org
0, 1, -4, 4, 0, 96, -396, 108, 0, 1012320, -192900, -64890, 11460, 90, -2038014720, 1977810240, -304486560, -12131280, 2792160, 21840, -33190735737600, 4445760574080, 2334485260800, -394554283200, 2330344800, 1198048320, 8215200
Offset: 1
Triangle starts:
0, 1;
-4, 4, 0;
96, -396, 108, 0;
1012320, -192900, -64890, 11460, 90;
-2038014720, 1977810240, -304486560, -12131280, 2792160, 21840;
...
!11=4037914; substituting n=11 in the formula of the k-th row we obtain k=6 and the coefficients T(i,6) are those needed for computing !11.
=> !11 = [ -33190735737600 +4445760574080*11 +2334485260800*11^2 -394554283200*11^3 +2330344800*11^4 +1198048320*11^5 +8215200*11^6 ]/10! = 4037914.
Cf.
A102411,
A094638,
A094216,
A003422,
A008276,
A101752,
A102409,
A102410,
A101751,
A000142,
A101559,
A101032,
A099731.
A122944
A nonsense sequence.
Original entry on oeis.org
1, 1, -1, -1, -1, 1, 0, 2, 1, -1, 1, -1, -4, -1, 1, 0, -2, 2, 6, 1, -1, 0, 0, 4, -2, -7, -1, 1, 0, 2, -1, -9, 3, 9, 1, -1, 1, 1, -13, 8, 20, -8, -13, -1, 1, 0, -2, -2, 24, -15, -31, 13, 17, 1, -1, 0, 0, 4, 4, -40, 20, 44, -14, -19, -1, 1, 0, 0, 0, -8, -4, 56, -24, -54, 14, 20, 1, -1, 0, 0, 0, 0, 16, 8, -88, 30, 71, -15, -22, -1, 1, 0, 0, 0, 16, 8
Offset: 1
Triangle:
{1},
{1, -1},
{-1, -1, 1},
{0, 2, 1, -1},
{1, -1, -4, -1, 1},
{0, -2, 2,6, 1, -1},
{0, 0, 4, -2, -7, -1, 1},
{0, 2, -1, -9, 3, 9,1, -1},
{1, 1, -13, 8, 20, -8, -13, -1, 1},
{0, -2, -2, 24, -15, -31, 13,17, 1, -1},
{0, 0, 4, 4, -40, 20, 44, -14, -19, -1, 1},
{0, 0, 0, -8, -4, 56, -24, -54, 14, 20, 1, -1}
Polynomials:
1,
1 - x,
-1 - x + x^2,
2 x + x^2 - x^3,
1 - x - 4 x^2 - x^3 + x^4,
-2 x + 2 x^2 + 6 x^3 +x^4 - x^5,
4 x^2 - 2 x^3 - 7 x^4 - x^5 +x^6,
2 x - x^2 - 9 x^3 + 3 x^4 + 9 x^5 + x^6 - x^7
-
c[i_, k_] := Floor[Mod[i/2^k, 2]]; b[i_, k_] = If[c[i, k] == 0 && c[i, k + 1] == 0, 0, If[c[i, k] == 1 && c[i, k + 1] == 1, 0, 1]];
An[d_] := Table[If[Sum[b[n, k]*b[m, k], {k, 0, d - 1}] == 0, 1, 0], {n, 0, d - 1}, {m, 0, d - 1}]: a=Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]];
Flatten[a]
RowSum=Table[Apply[Plus, Abs[a[[n]]]], {n, 1, Length[a]}]
A157097
Consider all Consecutive Integer Pythagorean 11-tuples (X, X+1, X+2, X+3, X+4, X+5, Z-4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives Z values.
Original entry on oeis.org
5, 65, 1385, 30365, 666605, 14634905, 321301265, 7053992885, 154866542165, 3400009934705, 74645352021305, 1638797734533965, 35978904807725885, 789897108035435465, 17341757471971854305, 380728767275345359205, 8358691122585626048165, 183510475929608427700385, 4028871779328799783360265
Offset: 0
a(2)=65 since 55^2 + 56^2 + 57^2 + 58^2 + 59^2 + 60^2 = 61^2 + 62^2 + 63^2 + 64^2 + 65^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
LinearRecurrence[{23, -23, 1}, {5, 65, 1385}, 25] (* Paolo Xausa, May 29 2025 *)
A161190
Sums of prime points found in four grids in each corner of a square.
Original entry on oeis.org
281, 414, 857, 942, 1124, 2569, 1295, 1433, 1094, 2426, 2730, 3000, 2459, 2575, 1818, 4991, 5331, 3363, 1163, 5006, 5226, 1381, 7213, 7493, 4729, 8217, 3456, 3546, 3684, 5615, 7834, 8090, 6243, 2143, 8862, 11407, 9396, 12019, 4906, 7631, 2591, 13411
Offset: 1
a(1)=281 because that is the sum of the prime points in the first set of 4 lower diagonals in the first 4 corner grids: (11+31+37+43+47+53+59=281).
-
10 'rotate points, Enoch Haga, Jun 05 2009
20 F=5
30 A=F+1:print A;:if A=prmdiv(A) then S=S+B:print "*";
40 B=A+5:print B;:if B=prmdiv(B) then S=S+B:print "*";
50 C=B+4:print C;:if C=prmdiv(C) then S=S+C:print "*";
60 D=C+3:print D;:if D=prmdiv(D) then S=S+D:print "*";
70 E=D+2:print E;:if E=prmdiv(E) then S=S+E:print "*";
80 F=E+1:print F;:if F=prmdiv(F) then S=S+F:print "*";
90 R=R+1:if R=4 and S=prmdiv(S) then print S;"*";
100 if R=4 then print R;S;:T=T+1:print T:R=0:S=0
110 stop:goto 30
A166346
Coefficients of numerator of recursively defined rational function: p(x,3)=x*(x^2 + 8*x + 1)/(1 - x)^4; p(x, n) = 2*x*D[p(x, n - 1), x] - p(x,n-2).
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 158, 482, 158, 1, 1, 605, 4194, 4194, 605, 1, 1, 2276, 31047, 67752, 31047, 2276, 1, 1, 8515, 210609, 856075, 856075, 210609, 8515, 1, 1, 31802, 1356368, 9367974, 17194910, 9367974, 1356368, 31802, 1, 1, 118713
Offset: 1
{1},
{1, 1},
{1, 8, 1},
{1, 39, 39, 1},
{1, 158, 482, 158, 1},
{1, 605, 4194, 4194, 605, 1},
{1, 2276, 31047, 67752, 31047, 2276, 1},
{1, 8515, 210609, 856075, 856075, 210609, 8515, 1},
{1, 31802, 1356368, 9367974, 17194910, 9367974, 1356368, 31802, 1},
{1, 118713, 8453460, 93489572, 285010254, 285010254, 93489572, 8453460, 118713, 1},
{1, 443072, 51564829, 876484896, 4159141218, 6855899968, 4159141218, 876484896, 51564829, 443072, 1}
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91.
-
p[x_, 0] := 1/(1 - x);
p[x_, 1] := x/(1 - x)^2;
p[x_, 2] := x*(1 + x)/(1 - x)^3;
p[x_, 3] := x*(x^2 + 8*x + 1)/(1 - x)^4;
p[x_, n_] := p[x, n] = 2*x*D[p[x, n - 1], x] - p[x, n - 2]
a = Table[CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x], {n, 1, 11}];
Flatten[a]
Table[Apply[Plus, CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x]], {n, 1, 11}];
A166349
Coefficients of numerator of recursively defined rational function: p(x,3)=x*(x^2 + 6*x + 1)/(1 - x)^4; p(x, n) = 2*x*D[p(x, n - 1), x] - p(x,n-2).
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 31, 31, 1, 1, 128, 382, 128, 1, 1, 493, 3346, 3346, 493, 1, 1, 1858, 24879, 54044, 24879, 1858, 1, 1, 6955, 169209, 683995, 683995, 169209, 6955, 1, 1, 25980, 1091460, 7496324, 13738230, 7496324, 1091460, 25980, 1, 1, 96985, 6809140
Offset: 1
{1},
{1, 1},
{1, 6, 1},
{1, 31, 31, 1},
{1, 128, 382, 128, 1},
{1, 493, 3346, 3346, 493, 1},
{1, 1858, 24879, 54044, 24879, 1858, 1},
{1, 6955, 169209, 683995, 683995, 169209, 6955, 1},
{1, 25980, 1091460, 7496324, 13738230, 7496324, 1091460, 25980, 1},
{1, 96985, 6809140, 74898500, 227852974, 227852974, 74898500, 6809140, 96985, 1},
{1, 361982, 41561069, 702794856, 3327271698, 5480955188, 3327271698, 702794856, 41561069, 361982, 1}
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
-
p[x_, 0] := 1/(1 - x);
p[x_, 1] := x/(1 - x)^2;
p[x_, 2] := x*(1 + x)/(1 - x)^3;
p[x_, 3] := x*(x^2 + 6*x + 1)/(1 - x)^4;
p[x_, n_] := p[x, n] = 2*x*D[p[x, n - 1], x] - p[x, n - 2]
a = Table[CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x], {n, 1, 11}];
Flatten[a]
Table[Apply[Plus, CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x]], {n, 1, 11}];
A167389
(arg(exp(-w)) + Im(w)) / (2*Pi), with w = W(n,-log(2)/2)/log(2), where W is the Lambert W function.
Original entry on oeis.org
2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 62, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101
Offset: 1
-
seq(round(evalf((argument(exp(-(ln(2)+LambertW(n, -(1/2)*ln(2)))/ln(2)))*ln(2)+Im(LambertW(n,-(1/2)*ln(2))))/(2*Pi*ln(2)))), n = 1 .. 100)
-
a[n_] := (Arg[Exp[-(Log[2] + ProductLog[n, -1/2*Log[2]])/Log[2]]]* Log[2] + Im[ProductLog[n, -1/2*Log[2]]])/(2*Pi*Log[2]); Table[a[n] // Round, {n, 1, 70}] (* Jean-François Alcover, Jun 20 2013 *)
Table[Floor[Im@LambertW[n,-Log@2/2]/Log@4/Pi+1/2],{n,69}] (* Travis Scott, Oct 09 2022 *)
Comments