A000007 The characteristic function of {0}: a(n) = 0^n.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 30.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- David Wasserman, Table of n, a(n) for n = 0..1000
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.
- Dr. Math, 0^0 (zero to the zero power)
- Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
- Donald E. Knuth, Two notes on notation, arXiv:math/9205211 [math.HO], 1992. See page 6 on 0^0.
- Robert Price, Comments on A000007, Jan 27 2016
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for "core" sequences
- Index entries for characteristic functions
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (1).
Crossrefs
Characteristic function of {g}: this sequence (g = 0), A063524 (g = 1), A185012 (g = 2), A185013 (g = 3), A185014 (g = 4), A185015 (g = 5), A185016 (g = 6), A185017 (g = 7). - Jason Kimberley, Oct 14 2011
Programs
-
Haskell
a000007 = (0 ^) a000007_list = 1 : repeat 0 -- Reinhard Zumkeller, May 07 2012, Mar 27 2012
-
Magma
[1] cat [0:n in [1..100]]; // Sergei Haller, Dec 21 2006
-
Maple
A000007 := proc(n) if n = 0 then 1 else 0 fi end: seq(A000007(n), n=0..20); spec := [A, {A=Z} ]: seq(combstruct[count](spec, size=n+1), n=0..20);
-
Mathematica
Table[If[n == 0, 1, 0], {n, 0, 99}] Table[Boole[n == 0], {n, 0, 99}] (* Michael Somos, Aug 25 2012 *) Join[{1},LinearRecurrence[{1},{0},102]] (* Ray Chandler, Jul 30 2015 *) PadRight[{1},120,0] (* Harvey P. Dale, Jul 18 2024 *)
-
PARI
{a(n) = !n};
-
Python
def A000007(n): return int(n==0) # Chai Wah Wu, Feb 04 2022
Formula
Multiplicative with a(p^e) = 0. - David W. Wilson, Sep 01 2001
a(n) = floor(1/(n + 1)). - Franz Vrabec, Aug 24 2005
As a function of Bernoulli numbers (cf. A027641: (1, -1/2, 1/6, 0, -1/30, ...)), triangle A074909 (the beheaded Pascal's triangle) * B_n as a vector = [1, 0, 0, 0, 0, ...]. - Gary W. Adamson, Mar 05 2012
a(n) = Sum_{k = 0..n} exp(2*Pi*i*k/(n+1)) is the sum of the (n+1)th roots of unity. - Franz Vrabec, Nov 09 2012
a(n) = (1-(-1)^(2^n))/2. - Luce ETIENNE, May 05 2015
a(n) = 1 - A057427(n). - Alois P. Heinz, Jan 20 2016
From Ilya Gutkovskiy, Sep 02 2016: (Start)
Binomial transform of A033999.
Inverse binomial transform of A000012. (End)
Comments