A000051 a(n) = 2^n + 1.
2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 8589934593
Offset: 0
References
- Paul Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 60, 244.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..100
- E. R. Berlekamp, A contribution to mathematical psychometrics, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
- Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
- Massimiliano Fasi and Gian Maria Negri Porzio, Determinants of Normalized Bohemian Upper Hessemberg Matrices, University of Manchester (England, 2019).
- Bartomeu Fiol, Jairo Martínez-Montoya, and Alan Rios Fukelman, The planar limit of N=2 superconformal field theories, arXiv:2003.02879 [hep-th], 2020.
- Bernard Frénicle de Bessy, Solutio duorum problematum circa numeros cubos et quadratos, (1657). Bibliothèque Nationale de Paris.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 114
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 362
- Edouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
- Kival Ngaokrajang, Illustration of Hilbert curve for n = 1..5
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 1.
- Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Eric Weisstein's World of Mathematics, Crossed Prism Graph.
- Eric Weisstein's World of Mathematics, Cunningham Number.
- Eric Weisstein's World of Mathematics, Fermat-Lucas Number.
- Eric Weisstein's World of Mathematics, Hilbert curve.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Irredundant Set.
- Eric Weisstein's World of Mathematics, Matching Number.
- Eric Weisstein's World of Mathematics, Maximum Independent Edge Set.
- Eric Weisstein's World of Mathematics, Rudin-Shapiro Sequence.
- Eric Weisstein's World of Mathematics, Star Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Haskell
a000051 = (+ 1) . a000079 a000051_list = iterate ((subtract 1) . (* 2)) 2 -- Reinhard Zumkeller, May 03 2012
-
Magma
[2^n+1: n in [0..40]]; // G. C. Greubel, Jan 18 2025
-
Maple
A000051:=-(-2+3*z)/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation a := n -> add(binomial(n,k)*bernoulli(n-k,1)*2^(k+1)/(k+1),k=0..n); # Peter Luschny, Apr 20 2009
-
Mathematica
Table[2^n + 1, {n,0,40}] 2^Range[0,40] + 1 (* Eric W. Weisstein, Jul 17 2017 *) LinearRecurrence[{3, -2}, {2, 3}, 40] (* Eric W. Weisstein, Sep 21 2017 *)
-
PARI
a(n)=2^n+1
-
PARI
first(n) = Vec((2 - 3*x)/((1 - x)*(1 - 2*x)) + O(x^n)) \\ Iain Fox, Dec 31 2017
-
Python
def A000051(n): return (1<
Chai Wah Wu, Dec 21 2022
Formula
a(n) = 2*a(n-1) - 1 = 3*a(n-1) - 2*a(n-2).
G.f.: (2-3*x)/((1-x)*(1-2*x)).
First differences of A052944. - Emeric Deutsch, Mar 04 2004
a(0) = 1, then a(n) = (Sum_{i=0..n-1} a(i)) - (n-2). - Gerald McGarvey, Jul 10 2004
Inverse binomial transform of A007689. Also, V sequence in Lucas sequence L(3, 2). - Ross La Haye, Feb 07 2005
a(n) = A127904(n+1) for n>0. - Reinhard Zumkeller, Feb 05 2007
Equals binomial transform of [2, 1, 1, 1, ...]. - Gary W. Adamson, Apr 23 2008
a(n) = A000079(n)+1. - Omar E. Pol, May 18 2008
E.g.f.: exp(x) + exp(2*x). - Mohammad K. Azarian, Jan 02 2009
From Peter Luschny, Apr 20 2009: (Start)
A weighted binomial sum of the Bernoulli numbers A027641/A027642 with A027641(1)=1 (which amounts to the definition B_{n} = B_{n}(1)).
a(n) = Sum_{k=0..n} C(n,k)*B_{n-k}*2^(k+1)/(k+1). (See also A052584.) (End)
a(n) is the a(n-1)-th odd number for n >= 1. - Jaroslav Krizek, Apr 25 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n) = A173786(n,0). (End)
If p[i]=Fibonacci(i-4) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise, then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n+2) = a(n) + a(n+1) + A000225(n). - Ivan N. Ianakiev, Jun 24 2012
a(n) = 3*A007583((n-1)/2) for n odd. - Eric W. Weisstein, Jul 17 2017
Sum_{n>=0} 1/a(n) = A323482. - Amiram Eldar, Nov 11 2020
Comments