cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 100 results. Next

A086088 Decimal expansion of the limit of the ratio of consecutive terms in the tetranacci sequence A000078.

Original entry on oeis.org

1, 9, 2, 7, 5, 6, 1, 9, 7, 5, 4, 8, 2, 9, 2, 5, 3, 0, 4, 2, 6, 1, 9, 0, 5, 8, 6, 1, 7, 3, 6, 6, 2, 2, 1, 6, 8, 6, 9, 8, 5, 5, 4, 2, 5, 5, 1, 6, 3, 3, 8, 4, 7, 2, 7, 1, 4, 6, 6, 4, 7, 0, 3, 8, 0, 0, 9, 6, 6, 6, 0, 6, 2, 2, 9, 7, 8, 1, 5, 5, 5, 9, 1, 4, 9, 8, 1, 8, 2, 5, 3, 4, 6, 1, 8, 9, 0, 6, 5, 3, 2, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jul 08 2003

Keywords

Comments

The tetranacci constant corresponds to the Golden Section in a quadripartite division 1 = u_1 + u_2 + u_3 + u_4 of a unit line segment, i.e., if 1/u_1 = u_1/u_2 = u_2/u_3 = u_3/u_4 = c, c is the tetranacci constant. - Seppo Mustonen, Apr 19 2005
The other 3 polynomial roots of 1+x+x^2+x^3-x^4 are -0.77480411321543385... and the complex-conjugated pair -0.07637893113374572508475 +- i * 0.814703647170386526841... - R. J. Mathar, Oct 25 2008
The continued fraction expansion starts 1, 1, 12, 1, 4, 7, 1, 21, 1, 2, 1, 4, 6, 1, 10, 1, 2, 2, 1, 7, 1, 1,... - R. J. Mathar, Mar 09 2012
For n>=4, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - Vladimir Shevelev, Mar 21 2014
Note that we have: c + c^(-4) = 2, and the k-nacci constant approaches 2 when k approaches infinity (Martin Gardner). - Bernard Schott, May 09 2022

Examples

			1.927561975...
		

References

  • Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.

Crossrefs

Cf. A000078.
k-nacci constants: A001622 (Fibonacci), A058265 (tribonacci), this sequence (tetranacci), A103814 (pentanacci), A118427 (hexanacci), A118428 (heptanacci).

Programs

Formula

Equals 1/4 + sqrt(11/48 - s/72 + 7/s) + sqrt(11/24 + s/72 - 7/s + 1 / sqrt(704/507 - 128 * s/1521 + 7168 / (169 * s))) where s = (sqrt(177304464) + 7020)^(1/3). - Michal Paulovic, Oct 08 2022

A104411 Number of prime factors, with multiplicity, of the tetranacci numbers A000078.

Original entry on oeis.org

0, 0, 1, 2, 3, 2, 1, 4, 5, 5, 1, 1, 3, 4, 6, 2, 2, 8, 5, 9, 2, 2, 4, 5, 6, 4, 2, 7, 5, 8, 2, 4, 3, 6, 12, 1, 3, 9, 7, 8, 2, 3, 4, 7, 4, 6, 4, 7, 3, 8, 6, 6, 6, 6, 7, 1, 3, 11, 5, 8, 5, 5, 5, 4, 7, 2, 3, 9, 5, 9, 4, 6, 6, 8, 12, 7, 4, 25, 8, 10, 4, 4, 4, 7, 6, 4, 11, 5, 6, 7, 3, 4, 3, 8, 8, 5, 6, 13, 8, 7, 5, 5, 5
Offset: 3

Views

Author

Jonathan Vos Post, Mar 05 2005

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[LinearRecurrence[{1, 1, 1, 1}, {1, 1, 2, 4}, 100]] (* Amiram Eldar, May 16 2021 *)

Formula

a(n) = A001222(A000078(n)). a(n) = bigomega(A000078(n)).

Extensions

More terms from R. J. Mathar, Dec 14 2009
Offset changed to 3 by Joerg Arndt, Dec 19 2020

A287656 Number of partitions of n into distinct tetranacci numbers (with a single type of 1) (A000078).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2017

Keywords

Examples

			a(15) = 2 because we have [15] and [8, 4, 2, 1].
		

Crossrefs

Formula

G.f.: Product_{k>=4} (1 + x^A000078(k)).

A359849 a(n) is the smallest tetranacci number (A000078) with exactly n distinct prime factors.

Original entry on oeis.org

1, 2, 15, 1490, 39648, 28074040, 100808458960497, 9966792788887776, 4997150614173857218560, 1835682610171974487231869, 889487735339682550112673527109223032, 52499930084496170026238596234557616056408988199026780675759699719704592
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2023

Keywords

Examples

			a(4) = 39648, because 39648 is a tetranacci number with 4 distinct prime factors {2, 3, 7, 59} and this is the smallest such number.
		

Crossrefs

Formula

a(n) = A000078(A359851(n)). - Daniel Suteu, Jan 18 2023

Extensions

a(11) from Daniel Suteu, Jan 18 2023

A359851 a(n) is the index of the smallest tetranacci number (A000078) with exactly n distinct prime factors.

Original entry on oeis.org

3, 5, 8, 15, 20, 30, 53, 60, 80, 89, 130, 252
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2023

Keywords

Crossrefs

Extensions

a(11) from Daniel Suteu, Jan 17 2023

A357453 Number of compositions (ordered partitions) of n into tetranacci numbers 1,2,4,8,15,29, ... (A000078).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 18, 31, 56, 98, 174, 306, 542, 956, 1690, 2984, 5273, 9313, 16453, 29062, 51340, 90689, 160203, 282994, 499908, 883078, 1559948, 2755624, 4867776, 8598858, 15189770, 26832521, 47399291, 83730207, 147908288, 261277998, 461544073
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2022

Keywords

Crossrefs

Programs

Formula

G.f.: 1 / (1 - Sum_{k>=4} x^A000078(k)).

A359877 a(n) is the smallest tetranacci number (A000078) with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 4, 8, 56, 108, 5536, 28074040, 39648, 147312, 18566888967365603514688, 9966792788887776, 2775641472, 2505471397838180985096739296, 1445523368993397560000765219760086502994234237205516083525719052320, 44092571484448511101335177770183225655413760
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2023

Keywords

Examples

			a(6) = 5536, because 5536 is a tetranacci number with 6 prime factors (counted with multiplicity) {2, 2, 2, 2, 2, 173} and this is the smallest such number.
		

Crossrefs

A359879 a(n) is the index of the smallest tetranacci number (A000078) with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

3, 5, 6, 7, 10, 11, 17, 30, 20, 22, 82, 60, 37, 100, 236, 157, 156, 242, 240
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2023

Keywords

Comments

a(19) > 400. - Daniel Suteu, Jan 18 2023

Crossrefs

Extensions

a(18) from Daniel Suteu, Jan 18 2023

A303264 Indices of primes in tetranacci sequence A000078.

Original entry on oeis.org

5, 9, 13, 14, 38, 58, 403, 2709, 8419, 14098, 31563, 50698, 53194, 155184
Offset: 1

Views

Author

M. F. Hasler, Apr 18 2018

Keywords

Comments

T = A000078 is defined by T(n) = Sum_{k=1..4} T(n-k), T(3) = 1, T(n) = 0 for n < 3.
The largest terms correspond to unproven probable primes T(a(n)).

Crossrefs

Cf. A000045, A000073, A000078, A001591, A001592, A122189 (or A066178), ... (Fibonacci, tribonacci, tetranacci numbers).
Cf. A005478, A092836, A104535, A105757, A105759, A105761, ... (primes in Fibonacci numbers and above generalizations).
Cf. A001605, A303263, A303264, A248757, A249635, ... (indices of primes in A000045, A000073, A000078, ...).
Cf. A247027: Indices of primes in the tetranacci sequence A001631 (starting 0, 0, 1, 0...), A104534 (a variant: a(n) - 2), A105756 (= A248757 - 3), A105758 (= A249635 - 4).

Programs

  • PARI
    a(n,N=5,S=vector(N,i,i>N-2))={for(i=N,oo,ispseudoprime(S[i%N+1]=2*S[(i-1)%N+1]-S[i%N+1])&&!n--&&return(i))}

Formula

a(n) = A104534(n) + 2.

A357452 Number of partitions of n into tetranacci numbers 1,2,4,8,15,29, ... (A000078).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 27, 36, 37, 46, 48, 60, 62, 74, 78, 94, 98, 114, 120, 140, 147, 168, 178, 204, 215, 242, 256, 288, 304, 338, 358, 398, 420, 462, 488, 537, 567, 619, 654, 714, 753, 816, 860, 932, 982, 1058, 1114
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2022

Keywords

Crossrefs

Programs

Formula

G.f.: Product_{k>=4} 1 / (1 - x^A000078(k)).
Showing 1-10 of 100 results. Next