A000139 a(n) = 2*(3*n)! / ((2*n+1)!*(n+1)!).
2, 1, 2, 6, 22, 91, 408, 1938, 9614, 49335, 260130, 1402440, 7702632, 42975796, 243035536, 1390594458, 8038677054, 46892282815, 275750636070, 1633292229030, 9737153323590, 58392041019795, 352044769046880, 2132866978427640, 12980019040145352, 79319075627675556
Offset: 0
Examples
G.f. = 2 + x + 2*x^2 + 6*x^3 + 22*x^4 + 91*x^5 + 408*x^6 + 1938*x^7 + ...
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 365.
- Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, pp. 65-82 of "A Century of Advancing Mathematics", ed. S. F. Kennedy et al., MAA Press 2015.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
- S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. See p. 399 Table A.7
- W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.41.
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011. See p. 15.
- E. Ben-Naim and P. L. Krapivsky, Popularity-Driven Networking, arXiv preprint arXiv:1112.0049 [cond-mat.stat-mech], 2011.
- Alin Bostan, Frédéric Chyzak, Bérénice Delcroix-Oger, Guillaume Laplante-Anfossi, Vincent Pilaud, and Kurt Stoeckl, Diagonals of permutahedra and associahedra, Sém. Lotharingien Comb., 37th Formal Power Series Alg. Comb. (FPSAC 2025). See pp. 10-11.
- David Bevan, Robert Brignall, Andrew Elvey Price and Jay Pantone, A structural characterisation of Av(1324) and new bounds on its growth rate, arXiv preprint arXiv:1711.10325 [math.CO], 2017.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, A family of Bell transformations, arXiv:1803.07727 [math.CO], 2018.
- Alin Bostan, Frédéric Chyzak, and Vincent Pilaud, Refined product formulas for Tamari intervals, arXiv:2303.10986 [math.CO], 2023.
- M. Bousquet-Mélou and A. Jehanne, Polynomial equations with one catalytic variable, algebraic series and map enumeration, arXiv:math/0504018 [math.CO], 2005; J Comb. Thy. B 96 (2006), 623-672.
- W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
- Colin Defant, Counting 3-Stack-Sortable Permutations, arXiv:1903.09138 [math.CO], 2019.
- A. Del Lungo, F. Del Ristoro and J.-G. Penaud, Left ternary trees and non-separable rooted planar maps, Theor. Comp. Sci., 233, 2000, 201-215.
- E. Duchi, V. Guerrini, S. Rinaldi and G. Schaeffer, Fighting fish: enumerative properties, Sém. Lothar. Combin. 78B (2017), Art. 43, 12 pp.
- E. Duchi, V. Guerrini, S. Rinaldi, and G. Schaeffer, Fighting fish, J. Phys. A, Math. Theor. 50, No. 2, Article ID 024002, 16 p. (2017).
- Enrica Duchi and Corentin Henriet, A bijection between rooted planar maps and generalized fighting fish, arXiv:2210.16635 [math.CO], 2022.
- S. Dulucq, S. Gire, and O. Guibert, A combinatorial proof of J. West's conjecture Discrete Math. 187 (1998), no. 1-3, 71--96. MR1630680(99f:05053).
- S. Dulucq, S. Gire, and J. West, Permutations with forbidden subsequences and nonseparable planar maps, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993). Discrete Math. 153 (1996), no. 1-3, 85-103. MR1394948 (98a:05081)
- Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, MAA Focus, August/September 2015, pp. 33-34. [Annotated scanned copy]
- W. Fang, Fighting fish and two-stack sortable permutations, arXiv preprint arXiv:1711.05713 [math.CO], 2017.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 713
- I. Gessel and G. Xin, The generating function of ternary trees and continued fractions, Electron. J Combin. 13 (2006), paper 53.
- Juan B. Gil, Oscar A. Lopez, and Michael D. Weiner, A positional statistic for 1324-avoiding permutations, arXiv:2311.18227 [math.CO], 2023.
- O. Guibert, Stack words, standard Young tableaux, permutations with forbidden subsequences and planar maps, Discr. Math., 210 (2000), 71-85.
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
- Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- S. Kitaev, P. Salimov, C. Severs and H. Ulfarsson, Restricted non-separable planar maps and some pattern avoiding permutations, 2012.
- S. Kitaev, P. Salimov, C. Severs and H. Ulfarsson, Restricted non-separable planar maps and some pattern avoiding permutations, Discrete Applied Mathematics, Volume 161, Issues 16-17, November 2013, Pages 2514-2526.
- Sergey Kitaev, Anna de Mier, and Marc Noy, On the number of self-dual rooted maps, European J. Combin. 35 (2014), 377-387. MR3090510. See Theorem 1.
- Sergey Kitaev, Pavel Salimov, Christopher Severs, and Henning Ulfarsson, Restricted non-separable planar maps and some pattern avoiding permutations, arXiv preprint arXiv:1202.1790 [math.CO], 2012. [Original title: Restricted rooted non-separable planar maps]
- Arturo Merino and Torsten Mütze, Combinatorial generation via permutation languages. III. Rectangulations, arXiv:2103.09333 [math.CO], 2021.
- Alois Panholzer, Parking function varieties for combinatorial tree models, arXiv:2007.14676 [math.CO], 2020.
- Permutation Pattern Avoidance Library (PermPAL), 1324 Domino
- L.-F. Préville-Ratelle and X. Viennot, An extension of Tamari lattices, arXiv preprint arXiv:1406.3787 [math.CO], 2014.
- G. Schaeffer, A combinatorial interpretation of super-Catalan numbers of order two, (2001).
- W. T. Tutte, A Census of Planar Maps, Canad. J. Math. 15 (1963), 249-271.
- J. West, Sorting twice through a stack, Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991), Theoret. Comput. Sci. 117 (1993), no. 1-2, 303-313.
- D. Zeilberger, A proof of Julian West's conjecture that the number of two-stacksortable permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!), Discrete Math., 102 (1992), 85-93.
- P. Zinn-Justin and J.-B. Zuber, Matrix integrals and the counting of tangles and links, Discrete Math 246 (2002), 343-360.
- P. Zinn-Justin and J.-B. Zuber, Matrix integrals and the generation and counting of virtual tangles and links, arXiv:math-ph/0303049, 2003; J. Knot Theor. Ramifications 13 (2004) 325-356.
Crossrefs
Programs
-
Haskell
a000139 0 = 2 a000139 n = ((3 * n) `a007318` (2 * n + 1)) `div` a000217 n -- Reinhard Zumkeller, Feb 17 2013
-
Magma
[2*Factorial(3*n)/(Factorial(2*n+1)*Factorial(n+1)): n in [0..25]]; // Vincenzo Librandi, Apr 20 2015
-
Maple
A000139 := n->2*(3*n)!/((2*n+1)!*((n+1)!)): seq(A000139(n), n=0..23);
-
Mathematica
Table[(2(3n)!)/((2n+1)!(n+1)!),{n,0,30}] (* Harvey P. Dale, Mar 31 2013 *)
-
PARI
a(n)=binomial(3*n,n)*2/((n+1)*(2*n+1)); \\ Joerg Arndt, Jul 21 2014
-
Python
from sympy import binomial def A000139(n): return (binomial(3*n, n)*2)//((n+1)*(2*n+1))
-
Python
A000139_list = [2] for n in range(1,30): A000139_list.append(3*(3*n-2)*(3*n-1)*A000139_list[-1]//(2*n+2)//(2*n+1)) # Chai Wah Wu, Apr 02 2021
-
Sage
def A000139(n): return (binomial(3*n, n)*2)//((n+1)*(2*n+1)) [A000139(n) for n in (0..23)] # Peter Luschny, Jun 17 2013
Formula
a(n) = 2*binomial(3*n, 2*n+1)/(n*(n+1)), or 2*(3*n)!/((2*n+1)!*((n+1)!)).
Using Stirling's formula in A000142 it is easy to get the asymptotic expression a(n) ~ (27/4)^n / (sqrt(Pi*n / 3) * (2*n + 1) * (n + 1)). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001
G.f.: A(z) = 2 + z*B(z), where B(z) = 1 - 8*z + 2*z*(5-6*z)*B - 2*z^2*(1+3*z)*B^2 - z^4*B^3.
G.f.: (2/(3*x)) * (hypergeom([-2/3, -1/3],[1/2],(27/4)*x)-1). - Mark van Hoeij, Nov 02 2009
G.f.: (2-3*R)/(R-1)^2 where R := RootOf(x-t*(t-1)^2,t) is an algebraic function in Maple notation. - Mark van Hoeij, Nov 08 2011
G.f.: 2*Q(0), where Q(k) = 1 + 3*x*(3*k+1)*(6*k+1)/(2*(k+1)*(4*k+3) - 6*x*(k+1)*(3*k+2)*(4*k+3)*(6*k+5)/(3*x*(3*k+2)*(6*k+5) + (2*k+3)*(4*k+5)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
E.g.f.: 2*Q(0), where Q(k) = 1 + 3*x*(3*k+1)*(6*k+1)/(2*(k+1)*(2*k+1)*(4*k+3) - 6*x*(k+1)*(2*k+1)*(3*k+2)*(4*k+3)*(6*k+5)/(3*x*(3*k+2)*(6*k+5) + (2*k+2)*(2*k+3)*(4*k+5)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) is the n-th Hausdorff moment of the positive function w(x) defined on (0,27) which is equal to w(x) = 3*sqrt(3)*2^(2/3)*(3-sqrt(81-12*x)/9)*(1+sqrt(81-12*x)/9)^(1/3)/(8*Pi*x^(2/3))-sqrt(3)*2^(1/3)*(3+sqrt(81-12*x)/9)*(1+sqrt(81-12*x)/9)^(-1/3)/(4*Pi*x^(1/3)), that is, a(n) is the integral Integral_{x=0..27/4} x^n*w(x) dx, n >= 0. The function w(x) is unique. - Karol A. Penson, Jun 17 2013
D-finite with recurrence 2*(n+1)*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Aug 21 2014
G.f. A(z) is related to the g.f. M(z) of A000168 by M(z) = 1 + A(z*M(z)^2) (see Tutte 1963, equation 6.3). - Noam Zeilberger, Nov 02 2016
From Ilya Gutkovskiy, Jan 17 2017: (Start)
E.g.f.: 2*2F2(1/3,2/3; 3/2,2; 27*x/4).
Sum_{n>=0} 1/a(n) = (1/2)*3F2(1,3/2,2; 1/3,2/3; 4/27) = 2.226206199291261... (End)
G.f. A(z) is the solution to the initial value problem 4*A + 2*z*A' = 8 + 3*z*A + 9*z^2*A' + 2*z^2*A*A', A(0) = 2. - Bjarki Ágúst Guðmundsson, Jul 03 2017
a(n+1) = a(n)*3*(3*n+1)*(3*n+2)/(2*(n+2)*(2*n+3)). - Chai Wah Wu, Apr 02 2021
a(n) = 4*(3*n)!/(n!*(2*n+2)!). - Chai Wah Wu, Dec 15 2021
From Peter Bala, Feb 05 2022: (Start)
O.g.f.: A(x) = T(x)*(3 - T(x)), where T(x) = 1 + x*T(x)^3 is the o.g.f. of A001764.
(1/x)*(A(x) - 2)/(A(x) - 1) = 1 + x + 3*x^2 + 11*x^3 + 46*x^4 + 209*x^5 + ... is the o.g.f. of A233389.
1 + 2*x*A'(2*x)/A(2*x) = 1 + x + 7*x^2 + 61*x^3 + 591*x^4 + 6101*x^6 + ... is the o.g.f. of A218473.
Let B(x) = 1 + x*(A(x) - 1). Then x*B'(x)/B(x) = x + x^2 + 4*x^3 + 17*x^4 + 81*x^5 + ... is the o.g.f. of A121545. (End)
Comments