cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000257 Number of rooted bicubic maps: a(n) = (8*n-4)*a(n-1)/(n+2) for n >= 2, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 3, 12, 56, 288, 1584, 9152, 54912, 339456, 2149888, 13891584, 91287552, 608583680, 4107939840, 28030648320, 193100021760, 1341536993280, 9390758952960, 66182491668480, 469294031831040, 3346270487838720, 23981605162844160, 172667557172477952
Offset: 0

Views

Author

Keywords

Comments

Number of rooted Eulerian planar maps with n edges. - Valery A. Liskovets, Apr 07 2002
Number of indecomposable 1342-avoiding permutations of length n.
Also counts rooted planar 2-constellations with n digons. - Valery A. Liskovets, Dec 01 2003
a(n) is also the number of rooted planar hypermaps with n darts (darts are semi-edges in the particular case of ordinary maps). - Valery A. Liskovets, Apr 13 2006
Number of "new" intervals in Tamari lattices of size n (see Chapoton paper). - Ralf Stephan, May 08 2007

Examples

			G.f. = 1 + x + 3*x^2 + 12*x^3 + 56*x^4 + 288*x^5 + 1584*x^6 + 9152*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 321.
  • L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin., Vol. 54 (2000), pp. 149-160.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A069726, A007054, A298358 (rooted).
First row of array A101477.

Programs

  • Magma
    [1] cat [3*2^n*Factorial(2*n)/((2*n^2+6*n+4)*Factorial(n)^2): n in [1.. 25]]; // Vincenzo Librandi, Oct 21 2014
    
  • Maple
    A000257 := proc(n)
            option remember;
            if n <=1 then
                    1;
            else
                    4*(2*n-1)*procname(n-1)/(n+2) ;
            end if ;
    end proc: # R. J. Mathar, Dec 18 2011
  • Mathematica
    CoefficientList[Series[1 + x HypergeometricPFQ[{1, 3/2}, {4}, 8 x], {x, 0, 10}], x]
    (* Second program: *)
    Join[{1}, Table[3*2^(n-1) CatalanNumber[n]/(n+2), {n, 30}]] (* Harvey P. Dale, Dec 18 2011 *)
  • PARI
    C(n)=binomial(2*n, n)/(n+1);
    a(n)=if(n==0, 1, 3*2^(n-1)*C(n)/(n+2) ); \\ Joerg Arndt, May 04 2013
    
  • PARI
    x='x+O('x^66); Vec( ((1-8*x)^(3/2) + 8*x^2 + 12*x - 1)/(32*x^2) ) \\ Joerg Arndt, May 04 2013
    
  • PARI
    x='x; y='y; Fxy = 16*x^2*y^2 - (8*x^2+12*x-1)*y + x^2+11*x-1;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(24) \\ Gheorghe Coserea, Nov 30 2016
    
  • Python
    a000257 = [1]
    for n in range(1, 25): a000257.append((8*n-4)*a000257[-1]//(n+2))
    print(a000257) # Gennady Eremin, Mar 22 2022

Formula

a(0) = 1 and a(n) = 3*2^(n-1)*C(n)/(n+2) for n >= 1, where C = Catalan (A000108).
a(n) = 2^(n-2) * A007054(n), n > 1.
O.g.f.: 1/4 + (1/8) * ( -(1-8*x)^(1/2) + 16*(1-8*x)^(1/2)*x+1-8*x ) / ((1-8*x)^(1/2)*x*(1+(1-8*x)^(1/2))). - Karol A. Penson, Jun 04 2004
E.g.f.: (1/8) * exp(4*x)*(8*BesselI(0, 4*x)*x-BesselI(1, 4*x)-8*BesselI(1, 4*x)*x)/x. - Karol A. Penson, Jun 04 2004
O.g.f.: 1 + x*2F1( (1, 3/2); (4); 8*x). - Olivier Gérard, Feb 15 2011
D-finite with recurrence (n + 2) * a(n) = (8*n - 4) * a(n - 1). - Simon Plouffe, Feb 09 2012
O.g.f.: ((1-8*x)^(3/2) + 8*x^2 + 12*x - 1)/(32*x^2) = 1 + x + 3*x^2 + 12*x^3 + 56*x^4 + .... The related generating function 1 + 3*x^2 + 12*x^4 + 56*x^6 + ... is the zeta function associated to a certain 2 X 2 matrix of noncommuting variables. See Kassel and Reutenauer, Example 5.1. - Peter Bala, Mar 15 2013
a(n) ~ 3*2^(3*n-1) / (sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Mar 10 2014
0 = a(n) * (64*a(n+1) - 28*a(n+2)) + a(n+1) * (12*a(n+1) + a(n+2)) if n > 0. - Michael Somos, Apr 03 2014
Integral representation as the n-th moment of the positive function W(x) on (0,8). a(n) = Integral_{x=0..8} x^n*W(x) dx, n=1,2,3,..., where W(x) = sqrt((8-x)^3/x)/(32*Pi). For n=0 the integral is equal to 3/4. This means that a(n) is the n-th moment, n=0,1,2,..., of the probability distribution which is a sum of W(x) as the continuous part and an atom at x=0 with weight 1/4 (Dirac(x)/4). This representation is unique as W(x) is the solution of the Hausdorff moment problem. - Karol A. Penson and Wojciech Mlotkowski, Jul 15 2015
G.f. y satisfies: 0 = 16*x^2*y^2 - (8*x^2+12*x-1)*y + x^2+11*x-1. - Gheorghe Coserea, Nov 22 2016
A(x) = (1 + 4*y - y^2)/4, where y = C(2*x), C being the g.f. for A000108. - Gheorghe Coserea, Apr 10 2018
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 1985/1029 + 1280*arcsin(1/(2*sqrt(2)))/(343*sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = 341/729 - 1280*arcsinh(1/(2*sqrt(2)))/2187. (End)
O.g.f.: x*A(x) is the compositional inverse of x - x^2*B(x), where B(x) is the o.g.f. of A165546. - Alexander Burstein, Aug 02 2024