A000351 Powers of 5: a(n) = 5^n.
1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125, 6103515625, 30517578125, 152587890625, 762939453125, 3814697265625, 19073486328125, 95367431640625, 476837158203125, 2384185791015625, 11920928955078125
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..100
- O. M. Cain, The Exceptional Selfcondensability of Powers of Five, arXiv:1910.13829 [math.HO], 2019.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 270
- IREM Paris-Nord, La pyramide de Sierpinski (in French).
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Box Fractal
- Index entries for linear recurrences with constant coefficients, signature (5).
Crossrefs
Programs
-
Haskell
a000351 = (5 ^) a000351_list = iterate (* 5) 1 -- Reinhard Zumkeller, Oct 31 2012
-
Magma
[5^n : n in [0..30]]; // Wesley Ivan Hurt, Sep 27 2016
-
Maple
[ seq(5^n,n=0..30) ]; A000351:=-1/(-1+5*z); # Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[5^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 06 2006 *) 5^Range[0, 30] (* Harvey P. Dale, Aug 22 2011 *)
-
Maxima
makelist(5^n,n,0,20); /* Martin Ettl, Dec 27 2012 */
-
PARI
a(n)=5^n \\ Charles R Greathouse IV, Jun 10 2011
-
Python
def a(n): return 5**n print([a(n) for n in range(24)]) # Michael S. Branicky, Nov 12 2022
-
Scala
(List.fill(50)(5: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, May 31 2019
Formula
a(n) = 5^n.
a(0) = 1; a(n) = 5*a(n-1) for n > 0.
G.f.: 1/(1 - 5*x).
E.g.f.: exp(5*x).
From Bernard Schott, Nov 12 2022: (Start)
Sum_{n>=0} 1/a(n) = 5/4.
Sum_{n>=0} (-1)^n/a(n) = 5/6. (End)
a(n) = Sum_{k=0..n} C(2*n+1,n-k)*A000045(2*k+1). - Vladimir Kruchinin, Jan 14 2025
Comments