A000539 Sum of 5th powers: 0^5 + 1^5 + 2^5 + ... + n^5.
0, 1, 33, 276, 1300, 4425, 12201, 29008, 61776, 120825, 220825, 381876, 630708, 1002001, 1539825, 2299200, 3347776, 4767633, 6657201, 9133300, 12333300, 16417401, 21571033, 28007376, 35970000, 45735625, 57617001, 71965908, 89176276, 109687425, 133987425, 162616576
Offset: 0
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Bruno Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian).
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Faulhaber's Formula
- Wikipedia, Faulhaber's formula
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
Magma
[n^2*(n+1)^2*(2*n^2+2*n-1)/12: n in [0..30]]; // Vincenzo Librandi, Apr 04 2015
-
Maple
A000539:=-(1+26*z+66*z**2+26*z**3+z**4)/(z-1)**7; # Simon Plouffe in his 1992 dissertation a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^5 od: seq(a[n], n=0..30); # Zerinvary Lajos, Feb 22 2008 a:=n->sum(j^5,j=0..n): seq(a(n), n=0..30); # Zerinvary Lajos, Jun 05 2008
-
Mathematica
Accumulate[Range[0, 40]^5] LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 33, 276, 1300, 4425, 12201}, 41] (* Jean-François Alcover, Feb 09 2016 *)
-
Maxima
A000539(n):=n^2*(n+1)^2*(2*n^2+2*n-1)/12$ makelist(A000539(n),n,0,30); /* Martin Ettl, Nov 12 2012 */
-
PARI
a(n)=n^2*(n+1)^2*(2*n^2+2*n-1)/12 \\ Charles R Greathouse IV, Jul 15 2011
-
PARI
concat(0, Vec(x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)^7 + O(x^100))) \\ Altug Alkan, Dec 07 2015
-
Python
A000539_list, m = [0], [120, -240, 150, -30, 1, 0, 0] for _ in range(10**2): for i in range(6): m[i+1] += m[i] A000539_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
-
Python
def A000539(n): return n**2*(n**2*(n*(n+3<<1)+5)-1)//12 # Chai Wah Wu, Oct 03 2024
Formula
a(n) = n^2*(n+1)^2*(2*n^2+2*n-1)/12.
a(n) = sqrt(Sum_{j=1..n}Sum_{i=1..n}(i*j)^5). - Alexander Adamchuk, Oct 26 2004
a(n) = Sum_{i = 1..n} J_5(i)*floor(n/i), where J_5 is A059378. - Enrique Pérez Herrero, Feb 26 2012
a(n) = 6*a(n-1) - 15* a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + 120. - Ant King, Sep 23 2013
a(n) = 120*C(n+3,6) + 30*C(n+2,4) + C(n+1,2) (Knuth). - Gary Detlefs, Jan 02 2014
a(n) = -Sum_{j=1..5} j*Stirling1(n+1,n+1-j)*Stirling2(n+5-j,n). - Mircea Merca, Jan 25 2014
Sum_{n>=1} 1/a(n) = 60 - 4*Pi^2 + 8*sqrt(3)*Pi * tan(sqrt(3)*Pi/2). - Vaclav Kotesovec, Feb 13 2015
a(n) = (n + 1)^2*n^2*(n + 1/2 + sqrt(3/4))*(n + 1/2 - sqrt(3/4))/6. See the Graham et al. reference, p. 275. - Wolfdieter Lang, Apr 02 2015
G.f.: x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)^7. - Robert Israel, Dec 07 2015
a(n) = (binomial(n+1,4) + 6*binomial(n+2,4) + binomial(n+3,4))*(binomial(n+2,3) - binomial(n+1,3)). - Tony Foster III, Oct 21 2018
E.g.f.: exp(x)*x*(12 + 186*x + 360*x^2 + 195*x^3 + 36*x^4 + 2*x^5)/12. - Stefano Spezia, May 04 2024
Comments