cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000541 Sum of 7th powers: 1^7 + 2^7 + ... + n^7.

Original entry on oeis.org

0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 3297456, 8080425, 18080425, 37567596, 73399404, 136147921, 241561425, 412420800, 680856256, 1091194929, 1703414961, 2597286700, 3877286700, 5678375241, 8172733129, 11577558576, 16164030000, 22267545625
Offset: 0

Views

Author

Keywords

Comments

a(n) is divisible by A000537(n) if and only n is congruent to 1 mod 3 (see A016777) - Artur Jasinski, Oct 10 2007
This sequence is related to A000540 by a(n) = n*A000540(n) - Sum_{i=0..n-1} A000540(i). - Bruno Berselli, Apr 26 2010

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 7 of array A103438.

Programs

  • Magma
    [n^2*(n+1)^2*(3*n^4+6*n^3-n^2-4*n+2)/24: n in [0..30]]; // Vincenzo Librandi, Feb 20 2016
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^7 od: seq(a[n], n=0..25); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[Sum[k^7, {k, 1, n}], {n, 0, 100}] (* Artur Jasinski, Oct 10 2007 *)
    s = 0; lst = {s}; Do[s += n^7; AppendTo[lst, s], {n, 1, 30, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
    LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 3297456}, 35] (* Vincenzo Librandi, Feb 20 2016 *)
  • PARI
    a(n)=n^2*(n+1)^2*(3*n^4+6*n^3-n^2-4*n+2)/24 \\ Edward Jiang, Sep 10 2014
    
  • PARI
    a(n) = sum(i=1, n, i^7); \\ Michel Marcus, Sep 11 2014
    
  • Python
    A000541_list, m = [0], [5040, -15120, 16800, -8400, 1806, -126, 1, 0, 0]
    for _ in range(10**2):
        for i in range(8):
            m[i+1] += m[i]
        A000541_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    

Formula

a(n) = n^2*(n+1)^2*(3*n^4 + 6*n^3 - n^2 - 4*n + 2)/24.
a(n) = sqrt(Sum_{j=1..n} Sum_{i=1..n} (i*j)^7). - Alexander Adamchuk, Oct 26 2004
Jacobi formula: a(n) = 2(A000217(n))^4 - A000539(n). - Artur Jasinski, Oct 10 2007
G.f.: x*(1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6)/(1-x)^9. - Colin Barker, May 25 2012
a(n) = 8*a(n-1) - 28* a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) + 5040. - Ant King, Sep 24 2013
a(n) = -Sum_{j=1..7} j*Stirling1(n+1,n+1-j)*Stirling2(n+7-j,n). - Mircea Merca, Jan 25 2014
a(n) = 2*A000217(n)^4 - (4/3)*A000217(n)^3 + (1/3)*A000217(n)^2. - Michael Raney, Feb 19 2016
a(n) = 72*A288876(n-2) + 48*A006542(n+2) + A000537(n). - Yasser Arath Chavez Reyes, Apr 27 2024
a(n) = Sum_{i=1..n} J_7(i)*floor(n/i), where J_7 is A069092. - Ridouane Oudra, Jul 17 2025