A000581 a(n) = binomial coefficient C(n,8).
1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 43758, 75582, 125970, 203490, 319770, 490314, 735471, 1081575, 1562275, 2220075, 3108105, 4292145, 5852925, 7888725, 10518300, 13884156, 18156204, 23535820, 30260340, 38608020, 48903492, 61523748, 76904685
Offset: 8
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
- J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 8..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 9.
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 4.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 258.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., Vol. 131, No. 1 (2002), pp. 65-75.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 13, 15.
- P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, 184 (1893), 835-901. - _Juergen Will_, Jan 02 2016
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Jonathan Vos Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
- Eric Weisstein's World of Mathematics, Composition.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
Magma
[Binomial(n,8): n in [8..100]]; // Vincenzo Librandi, Apr 08 2011
-
Maple
ZL := [S, {S=Prod(B, B, B, B, B, B, B, B, B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n+1), n=8..40); # Zerinvary Lajos, Mar 13 2007 A000581:=-1/(z-1)**9; # Simon Plouffe in his 1992 dissertation, with offset 0 seq(binomial(n,8),n=8..40); # Zerinvary Lajos, Jun 23 2008
-
Mathematica
Table[Binomial[n,8],{n,8,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
-
PARI
a(n)=binomial(n,8) \\ Charles R Greathouse IV, Feb 14 2012
Formula
G.f.: x^8/(1-x)^9.
a(n) = A110555(n+1,8). - Reinhard Zumkeller, Jul 27 2005
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)/8!. - Artur Jasinski, Dec 02 2007
Sum_{k>=8} 1/a(k) = 8/7. - Tom Edgar, Sep 10 2015
Sum_{n>=8} (-1)^n/a(n) = A001787(8)*log(2) - A242091(8)/7! = 1024*log(2) - 74432/105 = 0.9065224171... - Amiram Eldar, Dec 10 2020
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000
Some formulas referring to other offsets rewritten by R. J. Mathar, Jul 07 2009
3 more terms from William Boyles, Aug 06 2015
Comments