cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000581 a(n) = binomial coefficient C(n,8).

Original entry on oeis.org

1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 43758, 75582, 125970, 203490, 319770, 490314, 735471, 1081575, 1562275, 2220075, 3108105, 4292145, 5852925, 7888725, 10518300, 13884156, 18156204, 23535820, 30260340, 38608020, 48903492, 61523748, 76904685
Offset: 8

Views

Author

Keywords

Comments

Figurate numbers based on 8-dimensional regular simplex. - Jonathan Vos Post, Nov 28 2004
Just as A005712 and A000574 are described as the coefficients of x^4 and x^5 in the expansion of (1+x+x^2)^n, so should this sequence be described as the coefficients of x^3 therein. - R. K. Guy, Oct 19 2007
Product of 8 consecutive numbers divided by 8!. - Artur Jasinski, Dec 02 2007
In this sequence there are no primes. - Artur Jasinski, Dec 02 2007
a(n) = number of (n-8)-digit numbers with nondescending digits. E.g., a(9) = 9 = {1,2,3,..,9}, a(10) = 45 = {11-19, 22-29, 33-39, ..., 99} [0 is counted as a zero-digit number rather than a 1-digit number]. - Toby Gottfried, Feb 14 2012
a(n) =fallfac(n, 8)/8! = binomial(n, 8) is also the number of independent components of an antisymmetric tensor of rank 8 and dimension n >= 8 (for n = 1..7 this becomes 0). Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of compositions (ordered partitions) of n+1 into exactly 9 parts. - Juergen Will, Jan 02 2016
Number of weak compositions (ordered weak partitions) of n-8 into exactly 9 parts. - Juergen Will, Jan 02 2016
Partial sums of A000580. - Art Baker, Mar 26 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x^8/(1-x)^9.
a(n) = A110555(n+1,8). - Reinhard Zumkeller, Jul 27 2005
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)/8!. - Artur Jasinski, Dec 02 2007
Sum_{k>=8} 1/a(k) = 8/7. - Tom Edgar, Sep 10 2015
Sum_{n>=8} (-1)^n/a(n) = A001787(8)*log(2) - A242091(8)/7! = 1024*log(2) - 74432/105 = 0.9065224171... - Amiram Eldar, Dec 10 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000
Some formulas referring to other offsets rewritten by R. J. Mathar, Jul 07 2009
3 more terms from William Boyles, Aug 06 2015