A000680 a(n) = (2n)!/2^n.
1, 1, 6, 90, 2520, 113400, 7484400, 681080400, 81729648000, 12504636144000, 2375880867360000, 548828480360160000, 151476660579404160000, 49229914688306352000000, 18608907752179801056000000, 8094874872198213459360000000, 4015057936610313875842560000000
Offset: 0
Examples
For n = 2, a(2) = 6 since there are 6 functions f:[4]->[2] with size 2 preimages for both {1} and {2}. In this case, there are binomial(4, 2) = 6 ways to choose the 2 elements of [4] f maps to {1} and the 2 elements of [4] that f maps to {2}. - _Dennis P. Walsh_, Nov 17 2009
References
- G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1998.
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
- Shanzhen Gao and Kenneth Matheis, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. B. Tompkins, Methods of successive restrictions in computational problems involving discrete variables. 1963, Proc. Sympos. Appl. Math., Vol. XV pp. 95-106; Amer. Math. Soc., Providence, R.I.
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
- R. Florez and L. Junes, A relation between triangular numbers and prime numbers, Integers 12(1) (2012), 83-96.
- M. Ghebleh, Antichains of (0, 1)-matrices through inversions, Linear Algebra and its Applications 458 (2014), 503-511.
- S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126. [Accessible only in the USA through the Hathi Trust Digital Library.]
- Peter D. Loly and Ian D. Cameron, Frierson's 1907 Parameterization of Compound Magic Squares Extended to Orders 3^L, L = 1, 2, 3, ..., with Information Entropy, arXiv:2008.11020 [math.HO], 2020.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Dennis Walsh, Counting integer functions with size-2 preimage constraints, preprint.
- Eric Weisstein's World of Mathematics, Lattice Path.
- Index to divisibility sequences
- Index entries for related partition-counting sequences
Crossrefs
Programs
-
Maple
A000680 := n->(2*n)!/(2^n); a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]*(2*n-1)*n od: seq(a[n], n=0..16); # Zerinvary Lajos, Mar 08 2008 seq(product(binomial(2*n-2*k,2),k=0..n-1),n=0..16); # Dennis P. Walsh, Nov 17 2009
-
Mathematica
Table[Product[Binomial[2 i, 2], {i, 1, n}], {n, 0, 16}] polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[ polygorial[6, #] &, 17, 0] (* Robert G. Wilson v, Dec 26 2016 *) Table[(2n)!/2^n,{n,0,20}] (* Harvey P. Dale, Sep 21 2020 *)
-
PARI
a(n) = (2*n)! / 2^n
Formula
E.g.f.: 1/(1 - x^2/2) (with interpolating zeros). - Paul Barry, May 26 2003
a(n) = polygorial(n, 6) = (A000142(n)/A000079(n))*A001813(n) = (n!/2^n)*Product_{i=0..n-1} (4*i + 2) = (n!/2^n)*4^n*Pochhammer(1/2, n) = gamma(2*n+1)/2^n. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
a(n) = A087127(n,2*n) = Sum_{i=0..2*n} (-1)^(2*n-i)*binomial(2*n, i)*binomial(i+2, 2)^n. Let T(n,k,j) = ((n - k + j)*(2*n - 2*k + 1))^n*binomial(2*n, 2*k-j+1) then a(n) = Sum{k=0..n} (T(n,k,1) - T(n,k,0)). For example a(12) = A087127(12,24) = Sum_{k=0..12} (T(12,k,1) - T(12,k,0)) = 24!/2^12. - André F. Labossière, Mar 29 2004 [Corrected by Jianing Song, Jan 08 2019]
For even n, a(n) = binomial(2n, n)*(a(n/2))^2. For odd n, a(n) = binomial(2n, n+1)*a((n+1)/2)*a((n-1)/2). For positive n, a(n) = binomial(2n, 2)*a(n-1) with a(0) = 1. - Dennis P. Walsh, Nov 17 2009
a(n) = Product_{i=1..n} binomial(2i, 2).
a(n) = a(n-1)*binomial(2n, 2).
From Peter Bala, Feb 21 2011: (Start)
a(n) = Product_{k = 0..n-1} (T(n) - T(k)), where T(n) = n*(n + 1)/2 is the n-th triangular number.
Compare with n! = Product_{k = 0..n-1} (n - k).
Thus we may view a(n) as a generalized factorial function associated with the triangular numbers A000217. Cf. A010050. The corresponding generalized binomial coefficients a(n)/(a(k)*a(n-k)) are triangle A086645. Also cf. A186432.
a(n) = n*(n + n-1)*(n + n-1 + n-2)*...*(n + n-1 + n-2 + ... + 1).
For example, a(5) = 5*(5+4)*(5+4+3)*(5+4+3+2)*(5+4+3+2+1) = 113400. (End).
G.f.: 1/U(0) where U(k)= x*(2*k - 1)*k + 1 - x*(2*k + 1)*(k + 1)/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Oct 28 2012
a(n) = n!*(product of the first n odd integers). - Dennis P. Walsh, Nov 28 2012
a(0) = 1, a(n) = a(n-1)*T(2*n-1), where T(n) is the n-th triangular number. For example: a(4) = a(3)*T(7) = 90*28 = 2520. - Enric Reverter i Bigas, Jun 24 2013
E.g.f.: 1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, May 10 2017
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = cosh(sqrt(2)).
Sum_{n>=0} (-1)^n/a(n) = cos(sqrt(2)). (End)
D-finite with recurrence a(n) -n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jan 28 2022
a(n) = n *A007019(n-1), n>0. - R. J. Mathar, Jan 28 2022
Comments