A000700 Expansion of Product_{k>=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate partitions; number of symmetric Ferrers graphs with n nodes.
1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 11, 12, 12, 14, 16, 17, 18, 20, 23, 25, 26, 29, 33, 35, 37, 41, 46, 49, 52, 57, 63, 68, 72, 78, 87, 93, 98, 107, 117, 125, 133, 144, 157, 168, 178, 192, 209, 223, 236, 255, 276, 294, 312, 335, 361, 385
Offset: 0
Examples
T96a = 1/q + q^23 + q^71 + q^95 + q^119 + q^143 + q^167 + 2*q^191 + ... G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + ...
References
- R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 197.
- B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, see q_2.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 277, Theorems 345, 347.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- K. Alladi, A variation on a theme of Sylvester - a smoother road to Gollnitz (Big) theorem, Discrete Math., 196 (1999), 1-11.
- Cristina Ballantine, Hannah E. Burson, Amanda Folsom, Chi-Yun Hsu, Isabella Negrini and Boya Wen, On a Partition Identity of Lehmer, arXiv:2109.00609 [math.CO], 2021.
- J. Dousse, Siladic's theorem: Weighted words, refinement and companion, Proceedings of the American Mathematical Society, 145 (2017), 1997-2009.
- J. A. Ewell, Recursive determination of the enumerator for sums of three squares, Internat. J. Math. and Math. Sci, 24 (2000), 529-532.
- E. Friedman, Illustration of initial terms.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Edray Herber Goins and Talitha M. Washington, On the generalized climbing stairs problem, Ars Combin. 117 (2014), 183-190. MR3243840 (Reviewed), arXiv:0909.5459 [math.CO], 2009.
- H. Gupta, Combinatorial proof of a theorem on partitions into an even or odd number of parts, J. Combinatorial Theory Ser. A 21 (1976), no. 1, 100-103.
- R. K. Guy, A theorem in partitions, Research Paper 11, Jan. 1967, Math. Dept., Univ. of Calgary. [Annotated scanned copy]
- Christopher R. H. Hanusa and Rishi Nath, The number of self-conjugate core partitions, arxiv:1201.6629 [math.NT], 2012.
- Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [A later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication below.]
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 12.
- Mircea Merca, The bisectional pentagonal number theorem, Journal of Number Theory, Vol. 157 (Dec. 2015), pp. 223-232 (corollary 4.3).
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, pp. 60-75, function p_s(n).
- M. Osima, On the irreducible representations of the symmetric group, Canad. J. Math., 4 (1952), 381-384.
- Padmavathamma, R. Raghavendra and B. M. Chandrashekara, A new bijective proof of a partition theorem of K. Alladi, Discrete Math., 237 (2004), 125-128.
- Igor Pak and Greta Panova, Unimodality via Kronecker products, arXiv preprint arXiv:1304.5044 [math.CO], 2013.
- Igor Pak and Greta Panova, Bounds on Kronecker coefficients via contingency tables, Linear Algebra and its Applications (2020), Vol. 602, 157-178.
- J. Perry, Yet More Partition Function. [Archived copy as of Sep 23 2006 from web.archive.org]
- N. Robbins, Some identities connecting partition functions to other number theoretic functions, Rocky Mountain J. Math. Volume 29, Number 1 (1999), 335-345.
- I. Siladic, Twisted SL(C,3)~- modules and combinatorial identities, Glasnick Matematicki, 52 (2017), 53-77.
- Michael Somos, Introduction to Ramanujan theta functions.
- G. N. Watson, Two tables of partitions, Proc. London Math. Soc., 42 (1936), 550-556.
- Eric Weisstein's World of Mathematics, Self-Conjugate Partition.
- Eric Weisstein's World of Mathematics, Partition Function P.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
- Mark Wildon, Counting Partitions on the Abacus, arXiv:math/0609175 [math.CO], 2006.
- Index entries for McKay-Thompson series for Monster simple group
Crossrefs
Programs
-
Magma
m:=80; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1 + x^(2*j+1): j in [0..m+2]]) )); // G. C. Greubel, Sep 07 2023 -
Maple
N := 100; t1 := series(mul(1+x^(2*k+1),k=0..N),x,N); A000700 := proc(n) coeff(t1,x,n); end; # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(n>i^2, 0, b(n, i-1)+`if`(i*2-1>n, 0, b(n-(i*2-1), i-1)))) end: a:= n-> b(n, iquo(n+1, 2)): seq(a(n), n=0..80); # Alois P. Heinz, Mar 12 2016
-
Mathematica
CoefficientList[ Series[ Product[1 + x^(2k + 1), {k, 0, 75}], {x, 0, 70}], x] (* Robert G. Wilson v, Aug 22 2004 *) a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ ((1 - m) m /(16 q))^(-1/24), {q, 0, n}]]; (* Michael Somos, Jul 11 2011 *) a[ n_] := SeriesCoefficient[ Product[1 + x^k, {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Jul 11 2011 *) p[n_] := p[n] = Select[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], Apply[And, OddQ[#]] &]; Table[p[n], {n, 0, 20}] (* shows partitions of n into distinct odd parts *) Table[Length[p[n]], {n, 0, 20}] (* A000700(n), n >= 0 *) conjugatePartition[part_] := Table[Count[#, ?(# >= i &)], {i, First[#]}] &[part]; s[n] := s[n] = Select[IntegerPartitions[n], conjugatePartition[#] == # &]; Table[s[n], {n, 1, 20}] (* shows self-conjugate partitions *) Table[Length[s[n]], {n, 1, 20}] (* A000700(n), n >= 1 *) (* Peter J. C. Moses, Mar 12 2014 *) CoefficientList[QPochhammer[q^2]^2/(QPochhammer[q]*QPochhammer[q^4]) + O[q]^70, q] (* Jean-François Alcover, Nov 05 2015, after Michael Somos *) (O[x]^70 + 2/QPochhammer[-1, -x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *) nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[If[OddQ[k], poly[[j + 1]] += poly[[j - k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Nov 24 2017 *)
-
Maxima
S(n,m):=if n=0 then 1 else if n
Vladimir Kruchinin, Sep 07 2014 */ -
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Jun 11 2004 */
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Jun 11 2004 */
-
PARI
my(x='x+O('x^70)); Vec(eta(x^2)^2/(eta(x)*eta(x^4))) \\ Joerg Arndt, Sep 07 2023
-
Python
from math import prod from sympy import factorint def A000700(n): return 1 if n== 0 else sum((-1)**(k+1)*A000700(n-k)*prod((p**(e+1)-1)//(p-1) for p, e in factorint(k).items() if p > 2) for k in range(1,n+1))//n # Chai Wah Wu, Sep 09 2021
-
SageMath
from sage.modular.etaproducts import qexp_eta m=80 def f(x): return qexp_eta(QQ[['q']], m+2).subs(q=x) def A000700_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(x^2)^2/(f(x)*f(x^4)) ).list() A000700_list(m) # G. C. Greubel, Sep 07 2023
Formula
G.f.: Product_{k>=1} (1 + x^(2*k-1)).
G.f.: Sum_{k>=0} x^(k^2)/Product_{i=1..k} (1-x^(2*i)). - Euler (Hardy and Wright, Theorem 345)
G.f.: 1/Product_{i>=1} (1 + (-x)^i). - Jon Perry, May 27 2004
Expansion of chi(q) = (-q; q^2)_oo = f(q) / f(-q^2) = phi(q) / f(q) = f(-q^2) / psi(-q) = phi(-q^2) / f(-q) = psi(q) / f(-q^4), where phi(), chi(), psi(), f() are Ramanujan theta functions.
Sum_{k=0..n} A081360(k)*a(n-k) = 0, for n > 0. - John W. Layman, Apr 26 2000
Euler transform of period-4 sequence [1, -1, 1, 0, ...].
Expansion of q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4)) in powers of q. - Michael Somos, Jun 11 2004
Asymptotics: a(n) ~ exp(Pi*l_n)/(2*24^(1/4)*l_n^(3/2)) where l_n = (n-1/24)^(1/2) (Ayoub). The asymptotic formula in Ayoub is incorrect, as that would imply faster growth than the total number of partitions. (It was quoted correctly, the book is just wrong, not sure what the correct asymptotic is.) - Edward Early, Nov 15 2002. Right formula is a(n) ~ exp(Pi*sqrt(n/6)) / (2*24^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 23 2014
a(n) = (1/n)*Sum_{k = 1..n} (-1)^(k+1)*b(k)*a(n-k), n>1, a(0) = 1, b(n) = A000593(n) = sum of odd divisors of n. - Vladeta Jovovic, Jan 19 2002 [see Theorem 2(a) in N. Robbins's article]
For n > 0: a(n) = b(n, 1) where b(n, k) = b(n-k, k+2) + b(n, k+2) if k < n, otherwise (n mod 2) * 0^(k-n). - Reinhard Zumkeller, Aug 26 2003
Expansion of q^(1/24) * (m * (1 - m) / 16)^(-1/24) in powers of q where m = k^2 is the parameter and q is the nome for Jacobian elliptic functions.
Given g.f. A(x), B(q) = (1/q)* A(q^3)^8 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v * (u - v^2) * (v - u^2) - (4 * (1 - u*v))^2. - Michael Somos, Jul 16 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 16 2007
Expansion of q^(1/24)*f(t) in powers of q = exp(Pi*i*t) where f() is Weber's function. - Michael Somos, Oct 18 2007
a(n) = Sum_{k=1..n} (-1)^(n-k) A008284(n,k). - Jeremy L. Martin, Jul 06 2013
a(n) = S(n,1), where S(n,m) = Sum_{k=m..n/2} (-1)^(k+1)*S(n-k,k) + (-1)^(n+1), S(n,n)=(-1)^(n+1), S(0,m)=1, S(n,m)=0 for n < m. - Vladimir Kruchinin, Sep 07 2014
G.f.: Product_{k>0} (1 + x^(2*k-1)) = Product_{k>0} (1 - (-x)^k) / (1 - (-x)^(2*k)) = Product_{k>0} 1 / (1 + (-x)^k). - Michael Somos, Nov 08 2014
a(n) ~ Pi * BesselI(1, Pi*sqrt(24*n-1)/12) / sqrt(24*n-1) ~ exp(Pi*sqrt(n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)) * (1 - (3*sqrt(6)/(8*Pi) + Pi/(48*sqrt(6))) / sqrt(n) + (5/128 - 45/(64*Pi^2) + Pi^2/27648) / n). - Vaclav Kotesovec, Jan 08 2017
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018
Given g.f. A(x), B(q) = (1/q) * A(q^24) / 2^(1/4) satisfies 0 = f(B(q), B(q^5)) where f(u, v) = u^6 + v^6 + 2*u*v * (1 - (u*v)^4). - Michael Somos, Mar 14 2019
G.f.: Sum_{n >= 0} x^n/Product_{i = 1..n} ( 1 + (-1)^(i+1)*x^i ). - Peter Bala, Nov 30 2020
From Peter Bala, Jan 15 2021: (Start)
G.f.: (1 + x) * Sum_{n >= 0} x^(n*(n+2))/Product_{k = 1..n} (1 - x^(2*k)) = (1 + x)*(1 + x^3) * Sum_{n >= 0} x^(n*(n+4))/Product_{k = 1..n} (1 - x^(2*k)) = (1 + x)*(1 + x^3)*(1 + x^5) * Sum_{n >= 0} x^(n*(n+6))/ Product_{k = 1..n} (1 - x^(2*k)) = ....
G.f.: 1/(1 + x) * Sum_{n >= 0} x^(n-1)^2/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 + x)*(1 + x^3)) * Sum_{n >= 0} x^(n-2)^2/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 + x)*(1 + x^3)*(1 + x^5)) * Sum_{n >= 0} x^(n-3)^2/ Product_{k = 1..n} (1 - x^(2*k)) = .... (End)
G.f.: A(x) = exp( Sum_{k >= 1} (-1)^k/(k*(x^k - x^(-k))) ). - Peter Bala, Dec 23 2021
Comments