cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000749 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, with a(0)=a(1)=a(2)=0, a(3)=1.

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 20, 36, 64, 120, 240, 496, 1024, 2080, 4160, 8256, 16384, 32640, 65280, 130816, 262144, 524800, 1049600, 2098176, 4194304, 8386560, 16773120, 33550336, 67108864, 134225920, 268451840, 536887296, 1073741824, 2147450880
Offset: 0

Views

Author

Keywords

Comments

Number of strings over Z_2 of length n with trace 1 and subtrace 1.
Same as number of strings over GF(2) of length n with trace 1 and subtrace 1.
Also expansion of bracket function.
a(n) is also the number of induced subgraphs with odd number of edges in the complete graph K(n-1). - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 02 2009
From Gary W. Adamson, Mar 13 2009: (Start)
M^n * [1,0,0,0] = [A038503(n), a(n), A038505(n), A038504(n)];
where M = the 4 X 4 matrix [1,1,0,0; 0,1,1,0; 0,0,1,1; 1,0,0,1].
Sum of the 4 terms = 2^n.
Example; M^6 * [1,0,0,0] = [16, 20, 16, 12] sum = 64 = 2^6. (End)
Binomial transform of the period 4 repeat: [0,0,0,1], which is the same as A011765 with offset 0. - Wesley Ivan Hurt, Dec 30 2015
{A038503, A038504, A038505, A000749} is the difference analog of the hyperbolic functions of order 4, {h_1(x), h_2(x), h_3(x), h_4(x)}. For a definition see the reference "Higher Transcendental Functions" and the Shevelev link. - Vladimir Shevelev, Jun 14 2017
This is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S^4; see A291000. - Clark Kimberling, Aug 24 2017

Examples

			a(4;1,1)=4 since the four binary strings of trace 1, subtrace 1 and length 4 are { 0111, 1011, 1101, 1110 }.
		

References

  • Higher Transcendental Functions, Bateman Manuscript Project, Vol. 3, ed. A. Erdelyi, 1983 (chapter XVIII).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), this sequence (m=4), A049016 (m=5), A192080 (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Haskell
    a000749 n = a000749_list !! n
    a000749_list = 0 : 0 : 0 : 1 : zipWith3 (\u v w -> 4 * u - 6 * v + 4 * w)
       (drop 3 a000749_list) (drop 2 a000749_list) (drop 1 a000749_list)
    -- Reinhard Zumkeller, Jul 15 2013
    
  • Magma
    I:=[0,0,0,1]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    A000749 := proc(n) local k; add(binomial(n,4*k+3),k=0..floor(n/4)); end;
    A000749:=-1/((2*z-1)*(2*z**2-2*z+1)); # Simon Plouffe in his 1992 dissertation
    a:= n-> if n=0 then 0 else (Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,-6,4][i] else 0 fi)^(n-1))[1,3] fi: seq(a(n), n=0..33); # Alois P. Heinz, Aug 26 2008
    # Alternatively:
    s := sqrt(2): h := n -> [0,-s,-2,-s,0,s,2,s][1+(n mod 8)]:
    a := n -> `if`(n=0,0,(2^n+2^(n/2)*h(n))/4):
    seq(a(n),n=0..33); # Peter Luschny, Jun 14 2017
  • Mathematica
    Join[{0},LinearRecurrence[{4,-6,4},{0,0,1},40]] (* Harvey P. Dale, Mar 31 2012 *)
    CoefficientList[Series[x^3/(1 -4x +6x^2 -4x^3), {x,0,80}], x] (* Vincenzo Librandi, Dec 31 2015 *)
  • PARI
    a(n)=sum(k=0,n\4,binomial(n,4*k+3))
    
  • SageMath
    @CachedFunction
    def a(n): # a = A000749
        if (n<4): return (n//3)
        else: return 4*a(n-1) -6*a(n-2) +4*a(n-3)
    [a(n) for n in range(41)] # G. C. Greubel, Apr 11 2023

Formula

G.f.: x^3/((1-x)^4 - x^4).
a(n) = Sum_{k=0..n} binomial(n, 4*k+3).
a(n) = a(n-1) + A038505(n-2) = 2*a(n-1) + A009545(n-2) for n>=2.
Without the two initial zeros, binomial transform of A007877. - Henry Bottomley, Jun 04 2001
From Paul Barry, Aug 30 2004: (Start)
a(n) = (2^n - 2^(n/2+1)*sin(Pi*n/4) - 0^n)/4.
a(n+1) is the binomial transform of A021913. (End)
a(n; t, s) = a(n-1; t, s) + a(n-1; t+1, s+t+1) where t is the trace and s is the subtrace.
Without the initial three zeros, = binomial transform of [1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 3, ...]. - Gary W. Adamson, Jun 19 2008
From Vladimir Shevelev, Jun 14 2017: (Start)
1) For n>=1, a(n) = (1/4)*(2^n + i*(1+i)^n - i*(1-i)^n), where i=sqrt(-1);
2) a(n+m) = a(n)*H_1(m) + H_3(n)*H_2(m) + H_2(n)*H_3(m) + H_1(n)*a(m),
where H_1 = A038503, H_2 = A038504, H_3 = A038505. (End)
a(n) = (2^n - 2*A009545(n) - [n=0])/4. - G. C. Greubel, Apr 11 2023

Extensions

Additional comments from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 22 2002
New definition from Paul Curtz, Oct 29 2007
Edited by N. J. A. Sloane, Jun 13 2008