A059861
a(n) = Product_{i=2..n} (prime(i) - 2).
Original entry on oeis.org
1, 1, 3, 15, 135, 1485, 22275, 378675, 7952175, 214708725, 6226553025, 217929355875, 8499244879125, 348469040044125, 15681106801985625, 799736446901266875, 45584977473372211875, 2689513670928960500625
Offset: 1
n=4, a(4) = 1*(3-2)*(5-2)*(7-2) = 15. 48 first terms of A049296 give one complete period of dRRS[210], in which 15 d=2, 15 d=4 and 18 larger differences occur. For n=1, 2, ..., 5 in the periods of length {1, 2, 8, 48, 480, ...} [see A005867] the number of d=2 and also d=4 differences is {1, 1, 3, 15, 135, ..}
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
- R. K. Guy, Unsolved Problems in Number Theory, Sections A8, A1.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
- G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954.
- A.H.M. Smeets, Table of n, a(n) for n = 1..100
- Steven Brown, Distance between consecutive elements of the multiplicative group of integers modulo n, arXiv:2311.06873 [math.NT], 2023. See Table 1 p. 25.
- C. K. Caldwell, Prime k-tuple Conjecture
- Steven R. Finch, Hardy-Littlewood Constants [Broken link]
- Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
- G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- G. Polya, Heuristic reasoning in the theory of numbers, Am. Math. Monthly, 66 (1959), 375-384.
-
Table[ Det[ DiagonalMatrix[ Table[ Prime[i-1] - 2, {i, 2, n} ] ] + 1 ], {n, 2, 20} ] (* Alexander Adamchuk, May 21 2006 *)
Table[Product[Prime@k - 2, {k, 2, n}], {n, 1, 18}] (* Harlan J. Brothers, Jul 02 2018 *)
a[1] = 1; a[n_] := a[n] = a[n - 1] (Prime[n] - 2);
Table[a[n], {n, 18}] (* Harlan J. Brothers, Jul 02 2018 *)
Join[{1},FoldList[Times,Prime[Range[2,20]]-2]] (* Harvey P. Dale, Apr 19 2023 *)
-
a(n) = prod(i=2, n, prime(i)-2); \\ Michel Marcus, Apr 16 2017
A059865
Product_{i=4..n} (prime(i) - 6).
Original entry on oeis.org
1, 1, 1, 1, 5, 35, 385, 5005, 85085, 1956955, 48923875, 1516640125, 53082404375, 1964048961875, 80526007436875, 3784722349533125, 200590284525255625, 11032465648889059375, 672980404582232621875, 43743726297845120421875
Offset: 1
a(7) = (prime(4)-6) * (prime(5)-6) * (prime(6)-6) * (prime(7)-6) = 1 * 5* 7 *11 = 385
Also in one period of dRRS with 2,6,30,210,2310,... modulus [A002110(n)] 1,2,8,48,480,... differences occur [A005867(n)]. The number of X42424Y residue-difference-patterns are 0,1,1,1,5,... respectively starting at suitable residues coprime to A002110(n).
- See A059862 for references.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
A059862
a(n) = Product_{i=3..n} (prime(i) - 3).
Original entry on oeis.org
1, 1, 2, 8, 64, 640, 8960, 143360, 2867200, 74547200, 2087321600, 70968934400, 2696819507200, 107872780288000, 4746402332672000, 237320116633600000, 13289926531481600000, 770815738825932800000, 49332207284859699200000, 3354590095370459545600000, 234821306675932168192000000
Offset: 1
For n = 6, a(6) = 640 because:
prime(1..6)-3 = (-1,0,2,4,8,10) -> (1,1,2,4,8,10)
and
1*1*2*4*8*10 = 640. [Example generalized and reformatted per observation of _Jon E. Schoenfield_ by _Harlan J. Brothers_, Jul 15 2018]
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
- R. K. Guy, Unsolved Problems in Number Theory, A8, A1
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
- G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- C. K. Caldwell, Prime k-tuple Conjecture
- Steven R. Finch, Hardy-Littlewood Constants [Broken link]
- Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
- G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- G. Polya, Heuristic reasoning in the theory of numbers, Am. Math. Monthly, 66 (1959), 375-384.
-
a:= proc(n) option remember;
`if`(n<3, 1, a(n-1)*(ithprime(n)-3))
end:
seq(a(n), n=1..21); # Alois P. Heinz, Nov 19 2021
-
Join[{1, 1}, Table[Product[Prime[i] - 3, {i, 3, n}], {n, 3, 19}]] (* Harlan J. Brothers, Jul 02 2018 *)
a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] (Prime[n] - 3);
Table[a[n], {n, 19}] (* Harlan J. Brothers, Jul 02 2018 *)
-
a(n) = prod(i=3, n, prime(i) - 3); \\ Michel Marcus, Jul 15 2018
A000848
Number of n-input 3-output switching networks under action of GL(n,2) on the inputs and complementing group C(3,2) on the outputs.
Original entry on oeis.org
8, 120, 16880, 1791651440, 990442962518469863888, 38923012745870263852909632697729215009690731472
Offset: 1
- M. A. Harrison, On the number of classes of switching networks, J. Franklin Instit., 276 (1963), 313-327.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A059863
a(n) = Product_{i=3..n} (prime(i)-4).
Original entry on oeis.org
1, 1, 1, 3, 21, 189, 2457, 36855, 700245, 17506125, 472665375, 15597957375, 577124422875, 22507852492125, 967837657161375, 47424045200907375, 2608322486049905625, 148674381704844620625, 9366486047405211099375, 627554565176149143658125, 43301264997154290912410625
Offset: 1
- See A059862 for references.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
A059864
a(n) = Product_{i=4..n} (prime(i)-5), where prime(i) is i-th prime.
Original entry on oeis.org
1, 1, 1, 2, 12, 96, 1152, 16128, 290304, 6967296, 181149696, 5796790272, 208684449792, 7930009092096, 333060381868032, 15986898329665536, 863292509801938944, 48344380548908580864, 2997351594032332013568
Offset: 1
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
- R. K. Guy, Unsolved Problems in Number Theory, A8, A1
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
- G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954
- G. C. Greubel, Table of n, a(n) for n = 1..350
- C. K. Caldwell, Prime k-tuple Conjecture
- Steven R. Finch, Hardy-Littlewood Constants [Broken link]
- Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
- G. H. Hardy and J. E. Littlewood, Some problems of 'partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- G. Polya, Heuristic reasoning in the theory of numbers, Am. Math. Monthly,66 (1959), 375-384.
-
[n le 3 select 1 else (&*[NthPrime(j) -5: j in [4..n]]): n in [1..30]]; // G. C. Greubel, Feb 02 2023
-
Join[{1,1,1},FoldList[Times,Prime[Range[4,20]]-5]] (* Harvey P. Dale, Dec 29 2018 *)
-
a(n) = prod(k=4, n, prime(k)-5); \\ Michel Marcus, Dec 12 2017
-
def A059864(n): return product(nth_prime(j) -5 for j in range(4,n+1))
[A059864(n) for n in range(1,31)] # G. C. Greubel, Feb 02 2023
Showing 1-6 of 6 results.
Comments